[算法] Dijkstra 堆优化详解

本文详细介绍了Dijkstra算法的堆优化,包括利用堆、线段树和树状数组进行优化的方法。通过建立最短路树的概念,阐述了如何在优化过程中确保找到最短路径,并讨论了如何处理已访问节点的dist值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0.前置芝士、声明

知道 朴素 dijkstra( O ( n 2 ) O(n^2) O(n2)) 的写法。
知道 堆、优先队列的写法。

规定下列变量的意义:

//maxn 为自定义常量,随着题目限制更改,表示 n 的上界
bool b[maxn
### Dijkstra算法优化实现详解 #### 使用优先队列进行优化 为了提高效率,Dijkstra算法可以通过引入优先队列(通常基于最小实现)来进行优化。传统方法中,在每一轮迭代里都需要遍历所有未处理节点以找到当前距离最短的那个;而借助于优先队列,则可以在O(log n)时间内完成这一操作[^1]。 当执行`push()`或`pop()`操作时,内部会自动调整元素位置从而保持最小值位于顶部。这允许快速获取下一个待处理的最佳候选节点,并显著减少了整体计算量。 #### C++代码示例 下面是利用C++标准库中的`priority_queue`容器来实现带有优化功能的Dijkstra算法: ```cpp #include <queue> #include <vector> using namespace std; struct Edge { int to, weight; }; void dijkstra(int start, vector<vector<Edge>>& adjList, vector<int>& dists) { const int INF = 0x3f3f3f3f; // 定义无穷大常量 priority_queue<pair<int,int>, vector<pair<int,int>>, greater<>> pq; dists.assign(dists.size(), INF); dists[start] = 0; pq.push({0, start}); while (!pq.empty()) { auto [dist, u] = pq.top(); pq.pop(); if (dist != dists[u]) continue; for (auto& edge : adjList[u]) { int v = edge.to; int newDist = dist + edge.weight; if (newDist < dists[v]) { dists[v] = newDist; pq.push({newDist, v}); } } } } ``` 此版本通过将每个顶点与其对应的临时最短路径长度打包成一对整数并存入优先队列中实现了高效更新机制。每当发现更优解时即刻推送到队列内等待后续处理[^5]。 #### Python代码示例 对于Python开发者来说,可以使用内置模块`heapq`轻松构建类似的解决方案: ```python import heapq from typing import List, Tuple def dijkstra(start: int, graph: List[List[Tuple[int]]], distances: List[float]): inf = float('inf') queue = [(0, start)] distances[:] = [inf]*len(graph) distances[start] = 0 while queue: current_distance, node = heapq.heappop(queue) if current_distance > distances[node]: continue for neighbor, weight in graph[node]: distance = current_distance + weight if distance < distances[neighbor]: distances[neighbor] = distance heapq.heappush(queue, (distance, neighbor)) ``` 上述两段程序展示了如何运用不同编程语言特性有效地加速经典Dijkstra算法求解过程。值得注意的是,尽管这里采用了较为简洁的数据结构表示法,实际应用中可能还需要考虑更多细节问题,比如输入验证、异常捕获等[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值