前言
问题的实质:
这些问题根本是因为高并发问题!
以及
并非原子性操作
而且还有主从延迟的问题
一致性
“数据⼀致”指的是:缓存中有数据,缓存的数据值 = 数据库中的值。
一致性需要满足两个条件
- 消除其他并发线程的影响 脏数据
- 数据库和缓存操作是原子操作,可能其中一个成功而另一个失败
- 数据库操作成功而缓存失败 这时候如果缓存有过期时间且不太长 那么还不会这么严重
- 缓存成功而数据库失败 这个问题很严重
但是 原子操作一般来说 不太会失败 所以如果项目要求不是特别高 就算了
参考文章
小林coding
知乎Kaito 他的公众号是「水滴与银弹」 写的很好
https://www.zhihu.com/question/319817091/answer/2176813916 鹅厂架构师
https://www.zhihu.com/question/458352302/answer/2309776827 互联网科技小于哥
这四个写的都很好
先更新数据库,还是先更新缓存?
由于引入了缓存,那么在数据更新时,不仅要更新数据库,而且要更新缓存,这两个更新操作存在前后的问题:
- 先更新数据库,再更新缓存;
- 先更新缓存,再更新数据库;
阿旺没想到太多,他觉得最新的数据肯定要先更新数据库,这样才可以确保数据库里的数据是最新的,于是他就采用了「先更新数据库,再更新缓存」的方案。
先更新数据库,再更新缓存
这是我们最容易想到的方案
- 高并发下 出现了缓存和数据库中的数据不一致的现象
- 如果更新数据库和缓存有一个不成功,则会出问题
先更新缓存,再更新数据库
- 发现高并发下最终数据库的值和缓存的值还是可能对不上
- 如果更新数据库和缓存有一个不成功,则会出问题
结论与解决
无论是「先更新数据库,再更新缓存」,还是「先更新缓存,再更新数据库」,这两个方案都存在并发问题,当两个请求并发更新同一条数据的时候,可能会出现缓存和数据库中的数据不一致的现象。以及如果更新数据库和缓存有一个不成功,则会出问题。
但是,如果我们的业务对缓存命中率有很高的要求,我们可以采用「先更新数据库,再更新缓存」的方案,因为更新缓存并不会出现缓存未命中的情况。
但是这个方案前面我们也分析过,在两个更新请求并发执行的时候,会出现数据不一致的问题,因为更新数据库和更新缓存这两个操作是独立的,而我们又没有对操作做任何并发控制,那么当两个线程并发更新它们的话,就会因为写入顺序的不同造成数据的不一致。
所以我们得增加一些手段来解决这个问题,这里提供两种做法:
- 在更新完缓存时,给缓存加上较短的过期时间,这样即时出现缓存不一致的情况,缓存的数据也会很快过期,对业务还是能接受的。
- 在更新缓存前先加个分布式锁,保证同一时间只运行一个请求更新缓存,就会不会产生并发问题了,当然引入了锁后,对于写入的性能就会带来影响。如果读多写少还好,写操作一旦多一点就很影响性能了。
关于第二点,解决不一致的方案通常都是加「分布式锁」。
两个线程要修改「同一条」数据,每个线程在改之前,先去申请分布式锁,拿到锁的线程才允许更新数据库和缓存,拿不到锁的线程,返回失败,等待下次重试。
这么做的目的,就是为了只允许一个线程去操作数据和缓存,避免并发问题。
其中,分布式锁的实现可以使⽤以下策略:
除此之外,我们从「缓存利用率」的角度来评估这个方案,也是不太推荐的。
这是因为每次数据发生变更,都「无脑」更新缓存,但是缓存中的数据不一定会被「马上读取」,这就会导致缓存中可能存放了很多不常访问的数据,浪费缓存资源。
而且很多情况下,写到缓存中的值,并不是与数据库中的值一一对应的,很有可能是先查询数据库,再经过一系列「计算」得出一个值,才把这个值才写到缓存中。
由此可见,这种「更新数据库 + 更新缓存」的方案,不仅缓存利用率不高,还会造成机器性能的浪费。
而且,还是不能保证原子操作,其中一个步骤可能会失败
第三种做法就是下文提到的旁路缓存策略了
旁路缓存策略 Cache Aside——不更新缓存而是删除缓存
Cache Aside:在更新数据时,不更新缓存,而是删除缓存中的数据。然后,到读取数据时,发现缓存中没了数据之后,再从数据库中读取数据,更新到缓存中。
写策略和读策略
该策略又可以细分为「读策略」和「写策略」。
写策略的步骤:
- 更新数据库中的数据;
- 删除缓存中的数据。
读策略的步骤:
- 如果读取的数据命中了缓存,则直接返回数据;
- 如果读取的数据没有命中缓存,则从数据库中读取数据,然后将数据写入到缓存,并且返回给用户。
阿旺在想到「写策略」的时候,又陷入更深层次的思考,到底该选择哪种顺序呢?
- 先删除缓存,再更新数据库;
- 先更新数据库,再删除缓存。
阿旺这次经过上次教训,不再「想当然」的乱选方案
写策略之——先删除缓存,再更新数据库(不能满足要求)
可以看到,先删除缓存,再更新数据库,在「读 + 写」并发的时候,还是会出现缓存和数据库的数据不一致的问题。
如何解决——延迟双删
第一个问题,还记得前面讲到的「先删除缓存,再更新数据库」导致不一致的场景么?
这里我再把例子拿过来让你复习一下:
2 个线程要并发「读写」数据,可能会发生以下场景:
线程 A 要更新 X = 2(原值 X = 1)
线程 A 先删除缓存
线程 B 读缓存,发现不存在,从数据库中读取到旧值(X = 1)
线程 A 将新值写入数据库(X = 2)
线程 B 将旧值写入缓存(X = 1)
最终 X 的值在缓存中是 1(旧值),在数据库中是 2(新值),发生不一致。
第二个问题:是关于「读写分离 + 主从复制延迟」情况下,缓存和数据库一致性的问题。
如果使用「先更新数据库,再删除缓存」方案,其实也发生不一致:
线程 A 更新主库 X = 2(原值 X = 1)
线程 A 删除缓存
线程 B 查询缓存,没有命中,查询「从库」得到旧值(从库 X = 1)
从库「同步」完成(主从库 X = 2)
线程 B 将「旧值」写入缓存(X = 1)
最终 X 的值在缓存中是 1(旧值),在主从库中是 2(新值),也发生不一致。
(这个配图和文字不一样 仅做说明)
看到了么?这 2 个问题的核心在于:缓存都被回种了「旧值」。
那怎么解决这类问题呢?
最有效的办法就是,把缓存删掉。
但是,不能立即删,而是需要「延迟删」,这就是业界给出的方案:缓存延迟双删策略。
针对「先删除缓存,再更新数据库」方案在「读 + 写」并发请求而造成缓存不一致的解决办法是「延迟双删」。
延迟双删实现的伪代码如下:
#删除缓存
redis.delKey(X)
#更新数据库
db.update(X)
#睡眠
Thread.sleep(N)
#再删除缓存
redis.delKey(X)
如果难以接受sleep这种写法,可以使⽤延时队列进⾏替代。
加了个睡眠时间,主要是为了确保请求 A 在睡眠的时候,请求 B 能够在这这一段时间完成「从数据库读取数据,再把缺失的缓存写入缓存」的操作,然后请求 A 睡眠完,再删除缓存。
所以,请求 A 的睡眠时间就需要大于请求 B 「从数据库读取数据 + 写入缓存」的时间。
但是具体睡眠多久其实是个玄学,很难评估出来,所以这个方案也只是尽可能保证一致性而已,极端情况下,依然也会出现缓存不一致的现象。
按照延时双删策略,这 2 个问题的解决方案是这样的:
解决第一个问题:在线程 A 删除缓存、更新完数据库之后,先「休眠一会」,再「删除」一次缓存。
解决第二个问题:线程 A 可以生成一条「延时消息」,写到消息队列中,消费者延时「删除」缓存。
这两个方案的目的,都是为了把缓存清掉,这样一来,下次就可以从数据库读取到最新值,写入缓存。
但问题来了,这个「延迟删除」缓存,延迟时间到底设置要多久呢?
问题1:延迟时间要大于「主从复制」的延迟时间
问题2:延迟时间要大于线程 B 读取数据库 + 写入缓存的时间
但是,这个时间在分布式和高并发场景下,其实是很难评估的。
很多时候,我们都是凭借经验大致估算这个延迟时间,例如延迟 1-5s,只能尽可能地降低不一致的概率。
所以你看,采用这种方案,也只是尽可能保证一致性而已,极端情况下,还是有可能发生不一致。
但其实这背后还有一个问题,那就是如果删除的数据是一个热点数据,是有可能造成缓存击穿+的。针对这个问题,国外的 Facebook 给出了一个解决方案,就是在删除的时候,如果判定这是一个热门数据,那么不直接删,而是将它的生命周期设置的更短一些,比如 10 到 30 秒,然后业务方在调用的时候会表明这是一个脏数据。至于你要不要用,则交给业务方进行判断。
因此,还是比较建议用「先更新数据库,再删除缓存」的方案。
写策略之——(同步删除)先更新数据库,再删除缓存(基本满足要求)
最终,该用户年龄在缓存中是 20(旧值),在数据库中是 21(新值),缓存和数据库数据不一致。
从上面的理论上分析,先更新数据库,再删除缓存也是会出现数据不一致性的问题,这种情况「理论」来说是可能发生的,但实际真的有可能发生吗?在实际中,这个问题出现的概率并不高。
其实概率「很低」,这是因为它必须满足 3 个条件:
- 缓存刚好已失效
- 读请求 + 写请求并发
- 更新数据库操作在读数据库操作之后,且更新数据库 + 删除缓存的时间,要比读数据库 + 写缓存时间短
仔细想一下,条件 3 发生的概率其实是非常低的。
因为写数据库一般会先「加锁」,所以写数据库,通常是要比读数据库的时间更长的。而且缓存的写入通常要远远快于数据库的写入,所以在实际中很难出现请求 B 已经更新了数据库并且删除了缓存,请求 A 才更新完缓存的情况。
更何况此时 是读数据库+写缓存操作先发生。
而一旦请求 A 早于请求 B 删除缓存之前更新了缓存,那么接下来的请求就会因为缓存不命中而从数据库中重新读取数据,所以不会出现这种不一致的情况。
当然 这也意味着 我们需要尽量减少读数据库+写缓存操作中间的间隔,不要让它们太长 比如中间加很多计算的逻辑
注意 和先更新数据库还是先更新缓存那里不一样,那里是两个写操作,而这里是读写
在"先更新数据库,再删除缓存"方案下,"读写分离 + 主从库延迟”也会导致缓存和数据库不一致,缓解此问题的方案是凭借经验发送延迟消息到队列中,延迟删除缓存,同时也要控制主从库延迟,尽可能降低不一致发生的概率
所以,「先更新数据库 + 再删除缓存」的方案,是可以保证数据一致性的。
而且阿旺为了确保万无一失,还给缓存数据加上了**「过期时间」**,就算在这期间存在缓存数据不一致,有过期时间来兜底,这样也能达到最终一致。
好,解决了并发问题,我们继续来看前面遗留的,第二步执行「失败」导致数据不一致的问题。
如何解决原子性操作问题
「先更新数据库, 再删除缓存」其实是两个操作,前面的所有分析都是建立在这两个操作都能同时执行成功,而这次客户投诉的问题就在于,在删除缓存(第二个操作)的时候失败了,导致缓存中的数据是旧值。
好在之前给缓存加上了过期时间,所以才会出现客户说的过一段时间才更新生效的现象,假设如果没有这个过期时间的兜底,那后续的请求读到的就会一直是缓存中的旧数据,这样问题就更大了。
第一种方法是重试。
无论是先操作缓存,还是先操作数据库,但凡后者执行失败了,我们就可以发起重试,尽可能地去做「补偿」。
那这是不是意味着,只要执行失败,我们「无脑重试」就可以了呢?
答案是否定的。现实情况往往没有想的这么简单,失败后立即重试的问题在于:
立即重试很大概率「还会失败」
「重试次数」设置多少才合理?
重试会一直「占用」这个线程资源,无法服务其它客户端请求
看到了么,虽然我们想通过重试的方式解决问题,但这种「同步」重试的方案依旧不严谨。
那更好的方案应该怎么做?
答案是:异步重试。
文章1
什么是异步重试?
其实就是把重试请求写到「消息队列」中,然后由专门的消费者来重试,直到成功。
或者更直接的做法,为了避免第二步执行失败,我们可以把操作缓存这一步,直接放到消息队列中,由消费者来操作缓存。
到这里你可能会问,写消息队列也有可能会失败啊?而且,引入消息队列,这又增加了更多的维护成本,这样做值得吗?
这个问题很好,但我们思考这样一个问题:如果在执行失败的线程中一直重试,还没等执行成功,此时如果项目「重启」了,那这次重试请求也就「丢失」了,那这条数据就一直不一致了。
所以,这里我们必须把重试消息或第二步操作放到另一个「服务」中,这个服务用「消息队列」最为合适。这是因为消息队列的特性,正好符合我们的需求:
消息队列保证可靠性:写到队列中的消息,成功消费之前不会丢失(重启项目也不担心)
消息队列保证消息成功投递:下游从队列拉取消息,成功消费后才会删除消息,否则还会继续投递消息给消费者(符合我们重试的需求)
至于写队列失败和消息队列的维护成本问题:
写队列失败:操作缓存和写消息队列,「同时失败」的概率其实是很小的
维护成本:我们项目中一般都会用到消息队列,维护成本并没有新增很多
所以,引入消息队列来解决这个问题,是比较合适的。这时架构模型就变成了这样:
那如果你确实不想在应用中去写消息队列,是否有更简单的方案,同时又可以保证一致性呢?
方案还是有的,这就是近几年比较流行的解决方案:订阅数据库变更日志,再操作缓存。
具体来讲就是,我们的业务应用在修改数据时,「只需」修改数据库,无需操作缓存。
那什么时候操作缓存呢?这就和数据库的「变更日志」有关了。
拿 MySQL 举例,当一条数据发生修改时,MySQL 就会产生一条变更日志(Binlog),我们可以订阅这个日志,拿到具体操作的数据,然后再根据这条数据,去删除对应的缓存。
订阅变更日志,目前也有了比较成熟的开源中间件,例如阿里的 canal,使用这种方案的优点在于:
无需考虑写消息队列失败情况:只要写 MySQL 成功,Binlog 肯定会有
自动投递到下游队列:canal 自动把数据库变更日志「投递」给下游的消息队列
当然,与此同时,我们需要投入精力去维护 canal 的高可用和稳定性。
如果你有留意观察很多数据库的特性,就会发现其实很多数据库都逐渐开始提供「订阅变更日志」的功能了,相信不远的将来,我们就不用通过中间件来拉取日志,自己写程序就可以订阅变更日志了,这样可以进一步简化流程。
至此,我们可以得出结论,想要保证数据库和缓存一致性,推荐采用「先更新数据库,再删除缓存」方案,并配合「消息队列」或「订阅变更日志」的方式来做。
文章2
前面提到了,这个步骤的问题在于,「先更新数据库, 再删除缓存」其实是两个操作,前面的所有分析都是建立在这两个操作都能同时执行成功。
所以新的问题来了,如何保证「先更新数据库 ,再删除缓存」这两个操作能执行成功?
其实不管是先操作数据库,还是先操作缓存,只要第二个操作失败都会出现数据一致的问题。
问题原因知道了,该怎么解决呢?有两种方法:
- 消息队列重试机制。
- 订阅 MySQL binlog,再操作缓存。
消息队列重试机制
我们可以引入消息队列,将第二个操作(删除缓存)要操作的数据加入到消息队列,由消费者来操作数据。
如果应用删除缓存失败,可以从消息队列中重新读取数据,然后再次删除缓存,这个就是重试机制。当然,如果重试超过的一定次数,还是没有成功,我们就需要向业务层发送报错信息了。
如果删除缓存成功,就要把数据从消息队列中移除,避免重复操作,否则就继续重试。
举个例子,来说明重试机制的过程。
这个方案缺点是,对代码入侵性比较强,因为需要改造原本业务的代码。
订阅 MySQL binlog,再操作缓存
「先更新数据库,再删缓存」的策略的第一步是更新数据库,那么更新数据库成功,就会产生一条变更日志,记录在 binlog 里。
于是我们就可以通过订阅 binlog 日志,拿到具体要操作的数据,然后再执行缓存删除,阿里巴巴开源的 Canal 中间件就是基于这个实现的。
Canal 模拟 MySQL 主从复制的交互协议,把自己伪装成一个 MySQL 的从节点,向 MySQL 主节点发送 dump 请求,MySQL 收到请求后,就会开始推送 Binlog 给 Canal,Canal 解析 Binlog 字节流之后,转换为便于读取的结构化数据,供下游程序订阅使用。
下图是 Canal 的工作原理:
前面我们说到直接用消息队列重试机制方案的话,会对代码造成入侵,那么 Canal 方案就能很好的规避这个问题,因为它是直接订阅 binlog 日志的,和业务代码没有藕合关系,因此我们可以通过 Canal+ 消息队列的方案来保证数据缓存的一致性。
具体的做法是:将binlog日志采集发送到MQ队列里面,然后编写一个简单的缓存删除消息者订阅binlog日志,根据更新log删除缓存,并且通过ACK机制确认处理这条更新log,保证数据缓存一致性
这里有一个很关键的点,必须是删除缓存成功,再回 ack 机制给消息队列,否则可能会造成消息丢失的问题,比如消费服务从消息队列拿到事件之后,直接回了 ack,然后再执行删除缓存操作的话,如果删除缓存的操作还是失败了,那么因为提前给消息队列回 ack了,就没办重试了。
所以,如果要想保证「先更新数据库,再删缓存」策略第二个操作能执行成功,我们可以使用:
消息队列来重试缓存的删除,优点是保证缓存一致性的问题,缺点会对业务代码入侵
订阅 MySQL binlog + 消息队列 + 重试缓存的删除,优点是规避了代码入侵问题,也很好的保证缓存一致性的问题,缺点就是引入的组件比较多,对团队的运维能力比较有高要求。
这两种方法有一个共同的特点,都是采用异步操作缓存
主从延迟场景的问题
回顾下延迟双删那个例子
如何解决缓存穿透问题
这两种方案有可能导致请求因缓存缺失而访问数据库,给数据库带来压力,也就是缓存穿透的问题。针对缓存穿透问题,可以⽤缓存空结果、布隆过滤器进⾏解决。
可以做到强一致吗?
看到这里你可能会想,这些方案还是不够完美,我就想让缓存和数据库「强一致」,到底能不能做到呢?
其实很难。
要想做到强一致,最常见的方案是 2PC、3PC、Paxos、Raft 这类一致性协议,但它们的性能往往比较差,而且这些方案也比较复杂,还要考虑各种容错问题。
相反,这时我们换个角度思考一下,我们引入缓存的目的是什么?
没错,性能。
一旦我们决定使用缓存,那必然要面临一致性问题。性能和一致性就像天平的两端,无法做到都满足要求。
而且,就拿我们前面讲到的方案来说,当操作数据库和缓存完成之前,只要有其它请求可以进来,都有可能查到「中间状态」的数据。
所以如果非要追求强一致,那必须要求所有更新操作完成之前期间,不能有「任何请求」进来。
虽然我们可以通过加「分布锁」的方式来实现,但我们也要付出相应的代价,甚至很可能会超过引入缓存带来的性能提升。
所以,既然决定使用缓存,就必须容忍「一致性」问题,我们只能尽可能地去降低问题出现的概率。
同时我们也要知道,缓存都是有「失效时间」的,就算在这期间存在短期不一致,我们依旧有失效时间来兜底,这样也能达到最终一致。
总结
好了,总结一下这篇文章的重点。
1、想要提高应用的性能,可以引入「缓存」来解决。记住这点,缓存主要是为了提高性能,所以一般不要去费力去做强一致性,我们追求最终一致性即可。下面大多数高并发下数据不一致的情况都可以分布式锁解决,但是严重影响性能。
2、引入缓存后,需要考虑缓存和数据库一致性问题,可选的方案有:「更新数据库 + 更新缓存」、「更新数据库 + 删除缓存」。但是无论哪种方案,都需要设置缓存过期时间兜底。
3、更新数据库 + 更新缓存方案,在「并发」场景下无法保证缓存和数据一致性,解决方案是加「分布锁」,但这种方案存在「缓存资源浪费」和「机器性能浪费」的情况。而且也无法保证原子性。
但是优点是缓存命中率高和实现简单。如果我们的业务对缓存命中率有很高的要求,我们可以采用「先更新数据库,再更新缓存」的方案,因为更新缓存并不会出现缓存未命中的情况。
4、采用「先删除缓存,再更新数据库」方案,在「并发」场景下依旧有不一致问题,解决方案是「延迟双删」,但这个延迟时间很难评估。而且也无法保证原子性。以及存在缓存击穿的情况。
5、采用「先更新数据库,再删除缓存」方案,通常情况下不会在高并发环境下出问题,为了保证两步都成功执行,需配合「消息队列」或「订阅变更日志」的方案来做,本质是通过「重试」的方式保证数据最终一致。
6、采用「先更新数据库,再删除缓存」,「读写分离 + 主从库延迟」也会导致缓存和数据库不一致,缓解此问题的方案是「延迟双删」,凭借经验发送「延迟消息」到队列中,延迟删除缓存,同时也要控制主从库延迟,尽可能降低不一致发生的概率。以及存在缓存击穿的情况。
7、旁路缓存策略,为了应对缓存穿透问题,可以⽤缓存空结果、布隆过滤器进⾏解决。
8、为了避免缓存击穿,如果删除的是热门数据,那么建议采用不直接删除,而是设置一个较短的生命周期。业务方在获取数据的时候,告诉它这是一个旧数据,是否使用由你来决定
9、原子操作一般来说 不太会失败 所以如果项目要求不是特别高 就算了
其他需要注意的问题:
- redis:k-v大小的合理设置:Redis key大小设计: 由于⽹络的⼀次传输MTU最⼤为1500字节,所以为了保证⾼效的性能,建议单个k-v⼤⼩不超过1KB,⼀次 ⽹络传输就能完成,避免多次⽹络交互;k-v是越⼩性能越好
- Redis 热key:(1) 当业务遇到单个读热key,通过增加副本来提⾼读能⼒或是⽤hashtag把key存多份在 多个分⽚中;(2)当业务遇到单个写热key,需业务拆分这个key的功能,属于设计不合理-当业务遇到热分片,即多个热key在同⼀个分片上导致单分片cpu⾼,可通过hashtag⽅式打散
- redis其他问题
- 机器故障问题
所以,最终推荐的策略是:
先更新数据库,再删除缓存。
首先缓存需要过期时间来兜底
其中,删除缓存用cannal+订阅binlog+延时队列来做。
同时 ,应用布隆过滤器来或者短时缓存空结果来解决缓存击穿问题,以及可以参考在删除的时候,如果判定这是一个热门数据,那么不直接删,而是将它的生命周期设置的更短些,比如 10 到 30 秒,然后业务方在调用的时候会表明这是一个脏数据。至于你要不要用,则交给业务方进行判断。
终极方案(没写好··)
终极方案
核心流程:
-
删除数据库同步删除缓存:
缩小可能发生脏数据的时间窗 -
Binlog + MQ删除缓存:
兜底所有入口,避免遗漏删除缓存场景,同时通过MQ的消息重试保证缓存一定删除成功 -
监听Binlog延迟N秒进行数据一致性校验:
每个更新操作后延迟校验数据库与缓存的一致性,异常则修复,解决极端场景下的脏数据问题 -
过期删除缓存:
刚更新过的缓存存在不一致性的概率相对会大很多,因此可以在更新场景下设置更小的过期时间 -
存在数据库更新的链路禁用缓存:
因为数据库更新后,立刻查询缓存,缓存可能还没来的及更新,此时可直接查询数据库降低读脏数据风险 -
【集群问题】强制读Redis主节点:
更新Redis后,立刻读取,如果读的是从节点,可能数据不是最新的,此时可强制读主节点降低读脏数据风险 -
【监控分析】查询异步数据一致性校验:
查询完数据库之后,通过线程池再异步的查一次缓存,将数据库数据和缓存数据做比较,结果进行打点统计,如果概率超1%说明流程还不可靠,需分析不一致性数据,分析原因,继续优化。如果概率小于0.01%,证明流量基本可靠。 -
【灰度放量】新方案试点后再逐步放开:
没有经过线上验证的方案,不要全切,让风险可控,逐步放开