自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 LeNet(后续)和AlexNet、ResNet

然后用保存的MNIST数据集训练好的LeNet模型,预测图片。将打开图片的方式cv2,改成Image.open。我将数据预处理部分进行了修改。由原来的0.2提升到0.9。

2025-07-06 16:57:47 179

原创 LeNet

1.什么是LeNetLeNet5诞生于1994年,是最早的卷积神经网络之一,并且推动了深度学习领域的发展。自从1988年开始,在多年的研究和许多次成功的迭代后,这项由Yann LeCun完成的开拓性成果被命名为LeNet5。LeNet:主要用来进行手写字符的识别与分类确立了CNN的结构,现在神经网络中的许多内容在LeNet的网络结构中都能看到虽然LeNet网络结构比较简单,但是刚好适合神经网络的入门学习。

2025-07-06 15:06:54 795

原创 完整的模型验证套路

这里使用之前用CIFAR10数据集训练第9次的网络模型对图片进行预测。CIFAR10数据集 的类别分布。可以看出,预测成功为dog。将该图片保存到imgs中。先从网上找一个狗的图片。

2025-07-05 17:28:12 134

原创 GPU训练模型

2,数据例如 imgs、targets进行.to(device)操作并返回(必须返回)2,数据例如 imgs、targets进行.cuda()操作并返回。1,需要对网络模型中创建的实例进行.to(device)操作并返回。1,需要对网络模型中创建的实例进行.cuda()操作并返回。3,损失函数进行.to(device)操作并返回。3,损失函数进行.cuda()操作并返回。先定义device=”cuda“

2025-07-05 17:09:59 155

原创 完整的模型训练套路

得到的输出实际是[0.1, 0.2]这种结果,每个数为预测图片的特征,根据预测得分大小可知模型预测该输入的类别为1,而实际的target为0,在这个预测结果与实际target比较的过程实现中,PyTorch提供了一个argmax方法,这个方法可求出每个结果中的最大值所在的位置(即可获得预测类别的下标,并能与target进行比对)比较后得到bool类型结果,并通过sum方法,将True的结果计数。argmax()参数中传入1,是横向找出最大值,0纵向找出最大值。model.py中完成网络模型的搭建。

2025-07-05 15:58:42 118

原创 网络模型的保存与加载

保存Flatten(),return x加载如果直接加载,会报错,显示,你不能得到Network这个属性主要原因是找不到该模型的类,因此方式一读取自定义的神经网络时需要写上类的定义Flatten(),return x但是不需要实例化,即network=Network()

2025-07-04 19:57:50 217

原创 PyTorch提供的网络模型

报错,无法通过代码编译下载,只能手动下载添加到项目中。

2025-07-04 19:54:12 242

原创 神经网络(Neural Network)

激活函数是神经网络中对神经元输入进行变换的函数,位于线性变换(如矩阵乘法)之后,用于引入非线性特性。数学上,若线性变换输出为 z = Wx + b,则激活函数输出为 a = f(z),其中 f 是非线性函数。最常见的是。

2025-07-04 19:52:16 698

原创 Dataloader

DataLoader是一个用于数据加载和批量处理的工具类。查看官方文档参数中dataset:使用的数据集。batch_size:每批次加载的样本数,默认1。num_workers(默认0):数据加载的子进程数,0表示主进程加载。drop_last(默认False):假设数据有100条,每次取3条,最后剩1条,若为True,则舍去,False,不舍去。

2025-07-01 20:19:11 831

原创 Torchvision

是 PyTorch 生态中用于的核心工具库,提供三大核心功能,大幅简化 CV 开发流程。

2025-07-01 16:50:46 1026

原创 Transforms

查看transforms文档,最常用的是transforms中的。

2025-06-17 11:08:40 656

原创 TensorBoard

TensorBoard(将深度学习训练过程中抽象的训练数据转化为直观的图表)TensorBoard 是 TensorFlow 的可视化工具包,用于记录深度学习训练过程中的各种指标和结果,以直观的图表形式展示,帮助用户理解、调试和优化模型。以下是其核心功能:核心功能1. 监控训练指标实时可视化:损失函数(Loss)、准确率(Accuracy)、学习率等随训练轮次(Epoch)的变化趋势。作用:判断模型是否收敛(损失是否趋于稳定)。检测过拟合(训练损失下降但验证损失上升)。

2025-06-14 00:13:07 945

原创 Dataset

中,Dataset和DataLoader是两个关键的类,用于处理数据加载和数据预处理,

2025-06-12 21:47:29 320

原创 PyTorch环境配置

由于之前配置过PyTorch环境,在此我讲述一下大概流程:我使用的是带有GPU的电脑,所以配置的是对应的流程。在配置环境前需要检查自己电脑是否有GPU。没有GPU,细看如果有GPU,我们按下win+R组合键,打开cmd命令窗口,输入如下的命令:nvidia-smi可以看到驱动的版本是555.97;最高支持的CUDA版本是12.5版本,我们就可以根据这个信息来安装环境了。

2025-06-12 18:32:22 664 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除