Spark | Stage进度条展示(showConsoleProgress)

本文介绍了Spark任务中Stage进度日志的含义,详细解释了A和B参数的变化过程,以及如何根据Spark版本和配置控制ConsoleProgressBar的显示。通过分析源码,展示了Stage进度的计算逻辑,并提供了关闭日志输出的条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

spark.version = 2.4.4

在执行Spark任务中,经常会看到以下类似的Stage进度日志信息,如下:

[Stage 0:>                                                       (0 + 0) / 1753]
[Stage 0:>                                                      (0 + 65) / 1753]
[Stage 0:>                                                      (0 + 68) / 1753]
[Stage 0:>                                                      (0 + 71) / 1753]
[Stage 0:>                                                     (0 + 344) / 1753]
[Stage 0:>                                                     (0 + 376) / 1753]
[Stage 0:>                                                     (0 + 378) / 1753]
[Stage 0:>                                                     (4 + 375) / 1753]
[Stage 0:>                                                     (7 + 372) / 1753]
[Stage 0:>                                                     (8 + 371) / 1753]
[Stage 0:>                                      
### Spark任务Stage任务图表解及工作原理 #### Stage的概念及其重要性 在Spark中,作业(Job)被分解成多个阶段(Stages),每个阶段由一组并行的任务(Tasks)组成。这种设计使得复杂的计算可以分步完成,并且能够更好地利用集群资源。当存在宽依赖时,即父RDD的一个分区会被子RDD的多个分区所使用,则会产生新的Stage边界[^1]。 #### TaskScheduler与DAGScheduler的角色划分 TaskScheduler主要负责管理Worker节点上的资源分配并将具体任务提交给Executor执行;而DAGScheduler则专注于构建逻辑计划——即将整个应用转换为一系列相互关联的操作单元(也就是Stage),并通过识别窄依赖和宽依赖来决定如何切分这些操作单元。一旦确定了各个Stage之后,DAGScheduler就会把它们交给TaskScheduler去安排实际运行。 #### Shuffle过程对Stage的影响 由于Shuffle操作涉及到跨节点的数据交换,在处理这类情况之前必须先等待前一Stage结束才能继续下一个Stage的工作。因此,在涉及大量Shuffle的情况下,合理规划Stage结构对于提高性能至关重要。此外,Shuffle Blocker会在遇到Shuffle过程时记录下相应的元数据信息以便后续追踪和优化[^4]。 #### 实际案例中的表现形式 以分析Stack Overflow调查数据为例,假设要统计不同编程语言受欢迎程度这样的查询可能会触发多次Shuffle从而形成多级Stage。开发者可以通过查看Web UI提供的可视化界面或者日志文件来获取详细的Stage拓扑图,进而找出潜在瓶颈所在之处进行针对性调整[^2]。 ```python from pyspark.sql import SparkSession spark = SparkSession.builder.appName("example").getOrCreate() df = spark.read.csv("path/to/stackoverflow-survey-data", header=True) # 假设这里有一个复杂SQL查询会引发多个Stage result_df = df.groupBy("LanguageWorkedWith").count().orderBy("count", ascending=False).show() ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值