机器学习-KFold交叉验证

Section I: Brief Introduction on StratifiedKFold

A slight improvement over the standard k-fold cross-validation approach is stratified k-fold cross-validattion, which can yeild better bias and variance estimates, especially in case of unequal class proportions. In stratified cross-validattion, the class proportionss are preserved in each fold to ensure that each fold is representative of the class proportions in the training dataset.

FROM
Sebastian Raschka, Vahid Mirjalili. Python机器学习第二版. 南京:东南大学出版社,2018.

Section II: Code and Analyses

代码

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
import numpy as np
from sklearn.model_selection import StratifiedKFold
import warnings
warnings.filterwarnings("ignore")

#Section 1: Load Breast data, i.e., Benign and Malignant
breast=datasets.load_breast_cancer()
X=breast.data
y=breast.target
X_train,X_test,y_train,y_test=\
    train_test_split(X,y,test_size=0.2,stratify=y,random_state=1
### 如何在Python中实现K折交叉验证 以下是基于 `scikit-learn` 的 K 折交叉验证的具体实现方法。通过该库中的 `KFold` 类可以轻松完成数据集的分割操作。 #### 使用 `KFold` 进行 K 折交叉验证 下面是一个完整的代码示例,展示如何利用 `numpy` 和 `sklearn.model_selection.KFold` 实现 K 折交叉验证: ```python from numpy import array from sklearn.model_selection import KFold # 数据样本 data = array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6]) # 准备 K 折交叉验证对象 kfold = KFold(n_splits=3, shuffle=True, random_state=1) # 遍历训练/测试索引并打印结果 for train_index, test_index in kfold.split(data): print(f'train: {data[train_index]}, test: {data[test_index]}') ``` 上述代码展示了如何创建一个简单的数据集,并将其划分为三部分用于交叉验证[^1]。每次迭代都会返回一组新的训练集和测试集索引,从而允许模型在不同的子集中进行评估。 #### 关于数据集划分的比例 如果需要处理更复杂的机器学习任务,则可能涉及更大的数据集以及特定比例的数据拆分策略。例如,在某些情况下,可能会将整个数据集分成三个独立的部分:训练集、验证集和测试集。这种做法通常适用于深度学习项目或其他复杂建模场景[^2]。 对于大规模数据集而言,常见的划分方式如下所示: - 训练集大小:30,000 条记录; - 验证集大小:10,000 条记录; - 测试集大小:5,000 条记录; 这些参数可以根据实际需求调整以适应不同类型的算法或业务目标。 #### 注意事项 当应用 K 折交叉验证技术时,请注意以下几点: - **随机化**:设置 `shuffle=True` 参数可确保每一轮次选取到的是完全打乱顺序后的数据片段。 - **重复性控制**:为了保证实验结果的一致性和再现能力,建议固定随机种子 (`random_state`) 值以便获得相同的分区配置。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值