在很多场景下,Python 的开发效率和丰富的生态系统使其成为首选,但在性能要求极高的部分(如数值计算、图像处理或高并发场景)中,纯 Python 代码可能难以满足要求。此时,通过将关键代码部分用 C/C++ 实现,并与 Python 混合编程,就能在保持开发效率的同时获得显著的性能提升。下面详细介绍几种常见方法、示例代码以及优化思路。
1. 为什么使用混合编程?
- 性能瓶颈: 当 Python 代码在循环、数值计算或数据处理上出现瓶颈时,可以借助 C/C++ 的低级语言优势加速运行。
- 内存管理: C/C++ 允许更细粒度的内存管理,在处理大量数据时可以更好地控制内存使用。
- 现有代码复用: 已有的 C/C++ 库可以通过混合编程整合进 Python 项目,避免重复造轮子。
2. 常见实现方式
2.1 使用 Python C API 编写扩展模块
这是最原生的方法,直接使用 C 编写扩展模块,使其像普通 Python 模块一样被导入和调用。基本步骤如下:
-
编写 C 源码
例如,编写一个简单的求和