摘要
随着人工智能技术的飞速发展,内容生成方式正从传统的专业生产内容(PGC)逐步向AI生成内容(AIGC)转变。本文针对海螺AI多模态内容生成系统,从数据预处理、特征提取、多模态融合到生成模块,提出了一套端到端的架构设计。文章不仅给出了系统理论剖析,还通过经典代码示例展示了核心模块的实现细节,为后续系统优化与产业落地提供了有益的探索方向。
1. 引言
内容生成作为数字化时代的重要组成部分,正经历从依赖人工创作到依靠算法驱动的根本转变。PGC模式固然保证了内容质量,但其生产成本高、周期长,难以满足信息爆炸时代的需求。AIGC则借助深度学习、自然语言处理及计算机视觉等技术,实现多模态协同创作,从而在速度与创意上双重突破。海螺AI系统正是在此背景下应运而生,其多模态内容生成架构融合了图像、文本等多种数据源,旨在为内容创作提供全新的智能解决方案。
2. 背景与动机
近年来,Transformer 模型的出现(Vaswani et al., 2017)以及视觉 Transformer 的发展(Dosovitskiy et al., 2021)极大推动了各领域的技术突破。同时,OpenAI 的大规模预训练模型(Radford et al., 2019)为AIGC提供了理论支持。海螺AI系统正是结合了这些前沿技术,通过多模态信息