摘要
本文提出了 Fourier-Lerobot 框架,该框架通过将斯坦福大学研发的人形机器人动作策略 iDP3 封装进 Lerobot 平台,并引入 Fourier 分解方法,实现了运动规划与控制的高效迭代优化。实验结果显示,该方法在复杂环境下能够显著提升动作平滑度与实时响应能力。文章详细介绍了系统架构、核心算法实现及未来可能的发展方向。
关键词
Fourier-Lerobot、iDP3、Lerobot、人形机器人、动作规划、Fourier 分解
1. 引言
近年来,人形机器人在智能制造、服务机器人以及灾难救援等领域展现出巨大应用潜力。斯坦福大学提出的 iDP3(iterative Differential Policy Planning 3)算法,以其高鲁棒性与快速收敛性能获得广泛关注。然而,如何在现有机器人平台上高效封装并推广这一先进策略成为研究热点。本文基于 Lerobot 平台,提出了 Fourier-Lerobot 框架,通过融合 Fourier 分解方法,既加速了迭代求解过程,又有效提升了系统的抗干扰能力,从而为下一代人形机器人运动规划提供了新思路。
2. 系统架构与理论基础
2.1 iDP3 算法概述
iDP3 是一种基于迭代优化的动作规划算法,利用动态规划思想结合局部最优搜索,在高维状态空间中寻找最优运动策略。其关键在于对机器人复杂运动轨迹进行局部修正,确保在不断迭代中逼近全局最优策略。
2.2 Fourier 分解在运动规划中的应用
Fourier 分解技术能够将复杂的运动信号拆解成一系列正弦和余弦基函数,从而实现对运动数据的