摘要
本文提出了一种创新的MLOps平台,旨在融合AMD与NVIDIA两大主流GPU集群,实现异构计算环境下的分布式训练。通过引入容器化虚拟化、设备抽象层和统一通信协议,该系统打破了不同GPU架构之间的壁垒,能够在单一训练任务中高效调度和协同工作。实验结果表明,此架构在训练效率、资源利用率以及系统稳定性上均具有明显优势,为未来大规模深度学习应用提供了新思路【cite[1]】【cite[2]】。
1. 引言
近年来,深度学习技术在各行各业迅速普及,而分布式训练成为解决大规模模型高效训练的关键。传统单一厂商的GPU集群已难以满足不断扩大的计算需求,而AMD与NVIDIA两种架构各具优势:NVIDIA的CUDA生态体系成熟稳定,AMD则在性价比和能效上表现出色。如何在一个统一的平台中融合两者,成为提升整体训练性能和灵活性的热点问题【cite[3]】。
MLOps作为机器学习全流程管理平台,其核心在于自动化部署、持续监控和高效协同。构建基于异构GPU集群的分布式训练架构,不仅可以优化硬件资源调度,还能降低开发与运维的复杂性。本文将详细阐述系统设计、关键实现技术以及经典代码示例,展示如何在异构计算环境中实现跨平台分布式训练。
2. 系统架构设计
为了应对不同GPU架构的差异,本平台采用如下关键设计:
- 容器化与虚拟化
利