Python作为一种解释型、交互式编程语言,以其简洁的语法、丰富的库支持和广泛的应用领域,在数据分析与可视化领域占据了重要地位。Python不仅易于学习,而且功能强大,通过其强大的标准库和第三方库,可以轻松实现数据的清洗、探索、分析和可视化。本文将概述Python在数据分析与可视化中的关键库,并附上几个实际案例及其源码。
Python数据分析与可视化的关键库
1. Pandas
Pandas是Python中用于数据分析和操作的核心库,提供了快速、灵活且强大的数据结构,如Series(一维数组)和DataFrame(二维表格),以及丰富的数据清洗、转换、分析和可视化功能。
2. Matplotlib
Matplotlib是Python的2D绘图库,可以生成出版物质量的图形。它提供了类似于MATLAB的绘图界面,能够绘制各种静态、动态和交互式的图表。
3. Seaborn
Seaborn是基于Matplotlib的高级绘图库,提供了更多美观的图表样式和高级统计图形,如热力图、箱线图等,适用于探索数据的分布和关系。
4. Scikit-learn
Scikit-learn是Python中常用的机器学习库,提供了丰富的机器学习算法和数据处理工具,支持数据预处理、分类、回归、聚类等多种任务。
数据可视化案例及源码
案例一:柱状图展示不同类别的比较
目标:使用Matplotlib库创建一个柱状图,展示不同城市的人口数量。
源码:
import pandas as pd
import matplotlib.pyplot as plt
# 创建数据
data = {'城市': ['上海', '北京', '南京', '广州'],
'人口': [2423, 2154, 851, 1530]}