1.2 什么是神经网络?(What is a Neural Network)

本文通过两个房价预测实例,介绍了如何使用神经网络进行预测。首先从单神经元网络出发,利用ReLU激活函数处理非线性问题,进而扩展到包含多个输入特征的复杂神经网络。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

例1:房价预测

假设你有一个数据集包含了六栋房子的信息(面积,价格)。你想要拟合一个根据房屋面积预测房价的函数

如果你对线性回归很熟悉,于是你可能会得到这样一条直线。
在这里插入图片描述
价格永远不会是负数的。因此,为了替代一条可能会让价格为负的直线,我们把直线弯曲一点,让它最终在零结束。这条粗的蓝线最终就是你的函数,用于根据房屋面积预测价格。

在有关神经网络的文献中,你经常看得到这个函数。从趋近于零开始,然后变成一条直线。这个函数被称作ReLU激活函数,它的全称是Rectified Linear Unit。rectify(修正)可以理解成,这也是你得到一个这种形状的函数的原因。

我们把房屋的面积作为神经网络的输入(我们称之为x),通过一个节点(一个小圆圈),最终输出价格(我们用y表示)。其实这个小圆圈就是一个单独的神经元。接着你的网络实现了上面这个函数的功能。

在这里插入图片描述
如果这是一个单神经元网络,不管规模大小,它正是通过把这些单个神经元叠加在一起来形成。

例2:房价预测

我们不仅仅用房屋的面积来预测它的价格,现在你有了一些有关房屋的其它特征,比如卧室的数量,邮政编码和周围富裕程度。
在这里插入图片描述
在图上每一个画的小圆圈都可以是ReLU的一部分,也就是指修正线性单元,或者其它稍微非线性的函数。

(1)基于房屋面积卧室数量,可以估算家庭人口
(2)基于邮编,可以估测步行化程度或者学校的质量
(3)邻居的富裕程度,可以估算学校的质量

在这个情景里,家庭人口、步行化程度以及学校的质量都能帮助你预测房屋的价格。以此为例, 是所有的这四个输入, 得到了三个神经元,把这些单个的神经元叠加在一起,我们就有了一个稍微大一点的神经网络。它可以需要你得到房屋面积、步行化程度和学校的质量,或者其它影响价格的因素。

当你实现它之后,你要做的只是输入x,就能得到输出y。因为它可以自己计算你训练集中样本的数目以及所有的中间过程。所以,你实际上要做的就是:这里有四个输入的神经网络,这输入的特征可能是房屋的大小、卧室的数量、邮政编码和区域的富裕程度。给出这些输入的特征之后,神经网络的工作就是预测对应的价格。

同时也注意到这些隐藏单元圆圈,在一个神经网络中,它们每个都从输入的四个特征获得自身输入。因此,我们说输入层中间层被紧密的连接起来了。

当给予神经网络足够多的训练数据x和y,神经网络可以计算从x到y的精准映射函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值