学习笔记18--SiamRPN

本文深入探讨了Siamese-RPN在视觉追踪中的作用,它结合了Siamese网络和区域提案网络(RPN)。通过共享卷积层参数的两分支结构,实现了目标的高效定位。Siamese特征提取子网络使用AlexNet的修改版,而区域提案子网络受到Faster R-CNN的RPN启发。训练过程中,采用特定的锚点比例和正负样本策略,并利用one-shot detection方法进行参数学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文High Performance Visual Tracking with Siamese Region Proposal Network

本文主要提出Siamese region Proposal Network(Siamese-RPN),包含siamese子网络用于特征提取,以及候选区域生成网络(region proposal subnetwork)用于分类和回归。

一、先了解siamese网络--Fully-Convolutional Siamese Networks for Object Tracking

网络结构为上下两分支,共享卷积层参数(相同的特征提取网络φ,孪生网络含义)。模板分支z用来提取第一帧特征,检测分支x在当前帧上根据上一帧结果裁剪出search region。然后将模板z提取的特征图作为卷积核在x的特征上进行卷积操作,即图中的*部分,最终得到一个分数图score map,表示搜索区域各个位置与模板z之间的相似度,相应最大的点即为目标位置。

二、Siamese-RPN框架

 1、Siamese feature extraction subnetwork

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值