树
除了根节点,其他节点都有且仅有一个父节点
任何节点都有且仅有一个父节点
任何节点都有0-n个子节点
根节点:没有父节点的节点
子叶节点:没有叶子节点的节点
节点高度:某节点到子叶节点最长路径的连线条数
节点深度:某节点到根节点的路径连线条数
子树:任何节点和它下面所有节点构成
二叉树
所有节点最多有两个子节点的树称为二叉树
平衡树
任意节点的左、右子树的高度差小于1
二叉查找树(二叉搜索树、二叉排序树)
对于任意节点,左子树的所有节点值都小于它,右子树的所有节点值都大于它
注意:二叉查找树不一定是平衡树,需要算法保证平衡
二叉查找树遍历顺序:前序、中序、后序
(1)左子节点一定在右子节点前先遍历
(2)前、中、后指根节点在遍历中的顺序
前序:根 -> 左 -> 右
中序:左 -> 根 -> 右
后序:左 -> 右 -> 根
AVL树
是一种平衡二叉搜索树,AVL算法保证了当插入、删除节点后,树任然满足平衡树的特点
右旋
左子树高于右子树,直观感受需要把子左树变短:把原根节点17沉入到右子树,15作为新根节点;由于原来15节点的右节点16,大于15但是小于17,所以将16节点作为新的17的左子树
左旋
右子树高于左子树,直观感受需要把右子树变短:把原来的22根节点沉入左树,25作为新根节点,23变为22右节点
2-3树
2节点:自己容纳一个元素,可以有两个子节点,左树小于节点,右树大于节点
3节点:自己可容纳两个元素,节点内部的左边元素小于右边元素,可以有三个子节点:左子树 < 节点左元素 < 中子树 < 节点右元素 < 右子树
插入节点时,如何构建2-3树
情况1:如果整棵树只有一个2节点,直接变成一个3节点
情况2:如果整棵树只有一个3节点,首先变成一个4节点,再分解成一个2节点树
情况3:
约束1:如果3节点有一个2节点的父节点,新节点插入这个3节点后形成4节点,再分解成一个2节点的树;这个新的2节点树的根节点融入到父2节点,此时父2节点变成3节点;
约束2:如果在满足约束1下,发现父3节点还有一个3节点的父节点(爷爷节点),父3节点再分解成新的二节点树,新的二节点树的根节点再融入到它的父节点中(爷爷节点),直到所以节点满足约束1和2
其实约束2本质就是两个3节点不能相邻
关键字:先分解、再融入
因为值为10节点的父节点是一个值为2节点,所以值为10节点直接融入到值为2节点,形成一个3节点
因为值9的节点的父节点是一个3节点,所以值9节点融入到父节点(3节点)后形成4节点,需要再分解。
将2-3树的3节点的左元素标红:
将2-3树3节点写为二叉树形式,再把红元素放平
将放平的红元素放直,叶子节点加虚节点NIL
为什么平衡二叉树复杂度是O(log(n))
节点个数:第一层1,第二层2,......第四层8,层数h和每层节数是典型的等比数列关系 1*2^(h-1)
根据等比数列求和公式,层数h和总数n的关系是:
n = 1*(1-2^h)/(1-2) => -n = 1 - 2^h => n = 2^h -1 => h = log2(n+1)
(1)根据排序二叉树的特点,h高度就是二叉树搜索最坏搜索次数(复杂度)
(2)根据时间复杂度的定义,log2(n+1)和log2(n)是同级函数,所以二叉树的复杂度为O(log2(n))