RAG实践(一)安装本地OLLAMA

@[TOC]RAG实践(一)安装本地OLLAMA

下载Ollama

链接: https://ollama.com/
在这里插入图片描述

配置环境变量

  1. Ollama模型下载默认在c盘
    变量名:OLLAMA_MODELS
    变量值:D:***\ollama\models
    在这里插入图片描述

下载模型

链接: https://ollama.com/search
在这里插入图片描述

1.选择想要的模型点击复制
2. 粘贴到本机的crm命令行中在这里插入图片描述
大模型拉取完成后会在本机自动启动大模型推理服务
在这里插入图片描述
至此说明的ollama已经安装成功,输入/bye 可以退出命令行

重新启动大模型的对话
可以执行 ollama list
再运行 ollama run llama3:latest
在这里插入图片描述

### 基于 Ollama 和 AnythingLLM 的 DeepSeek-R1 本地 RAG 实现 #### 准备工作 为了在本地环境中部署并使用带有RAG功能的DeepSeek-R1模型,需先安装Ollama工具以及设置AnythingLLM环境。Ollama允许以类似于容器镜像的方式管理和下载所需的训练文件[^2]。 ```bash # 安装ollama CLI工具 pip install ollama-cli ``` #### 下载和启动模型 通过指定命令可以轻松获取特定版本的DeepSeek-R1模型,并将其作为服务启动: ```bash # 使用ollama拉取并运行7B参数量的DeepSeek-R1模型实例 ollama pull deepseek-r1:7b ollama run deepseek-r1:7b ``` #### 配置 AnythingLLM 访问前端 完成上述操作后,下步是在AnythingLLM中配置Web界面以便能够与已加载的模型交互。这通常涉及编辑配置文件来指向正在运行的服务地址。 ```json { "model": { "name": "deepseek-r1", "version": "7b", "url": "http://localhost:8000" } } ``` #### 构建检索增强生成(Retrieval-Augmented Generation, RAG) 对于构建完整的RAG系统而言,在已有基础上还需集成文档索引库(如Elasticsearch、FAISS等),用于存储外部知识源供查询时调用。当接收到用户输入后,应用程序会首先向这些索引发起搜索请求,收集相关信息片段后再传递给DeepSeek-R1进行最终的回答合成处理。 ```python from elasticsearch import Elasticsearch import requests def retrieve_documents(query): es = Elasticsearch() response = es.search(index="knowledge_base", body={"query": {"match": {"content": query}}}) documents = [hit["_source"]["content"] for hit in response["hits"]["hits"]] return "\n".join(documents) def generate_response_with_rag(user_input): context = retrieve_documents(user_input) payload = { 'prompt': f"Context:\n{context}\n\nQuestion:{user_input}", 'max_tokens': 50, 'temperature': 0.9 } api_url = "http://localhost:8000/generate" response = requests.post(api_url, json=payload).json() generated_text = response['choices'][0]['text'] return generated_text.strip() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值