使用llama-index连接neo4j知识图谱 达成本地大模型构建查询知识图谱功能
当然!我将提供更多详细的解释,帮助您更好地理解如何使用Llama-Index连接Neo4j知识图谱,实现大模型构建和查询功能。
概述
目标
我们的目标是使用Llama-Index来连接到Neo4j,以构建和查询知识图谱。通过这个过程,我们能够将文档中的信息转化为知识图谱,并通过大语言模型进行查询。
以下参考llama-index官方实现
主要步骤
- 安装依赖项:我们需要安装一些Python库来支持我们的工作。
- 配置环境:我们需要设置一些环境变量来使用OpenAI或Azure OpenAI的API。
- 构建知识图谱:我们将使用Neo4j来存储和管理知识图谱。
- 查询知识图谱:我们将通过Llama-Index查询Neo4j中的数据。
- (可选)手动添加三元组:我们还可以手动添加三元组到知识图谱中。
1. 安装依赖项
首先,我们需要安装一些Python库。这些库包括Llama-Index的相关组件和Neo4j的连接库。
%pip install llama-index-llms-openai
%pip install llama-index-graph-stores-neo4j
%pip install llama-index-embeddings-openai
%pip install llama-index-llms-azure-openai
%pip install neo4j
这些库的功能如下:
llama-index-llms-openai
和llama-index-llms-azure-openai
:用于连接OpenAI和Azure OpenAI的API,以获取NLP模型。llama-index-graph-stores-neo4j
:用于与Neo4j数据库交互。llama-index-embeddings-openai
:用于处理文本嵌入。neo4j
:Neo4j数据库的官方Python驱动程序。
2. 配置环境
为了使用OpenAI或Azure OpenAI的API,我们需要配置一些环境变量和API密钥。
配置ollama
import os
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings, StorageContext, KnowledgeGraphIndex
from llama_index.embeddings.ollama import OllamaEmbedding
from llama_index.llms.ollama import Ollama
from llama_index.core import KnowledgeGraphIndex, SimpleDirectoryReader, StorageContext
from llama_index.graph_stores.neo4j import Neo4jGraphStore
# 设置嵌入模型
Settings.embed_model = OllamaEmbedding(model_name="znbang/bge:large-zh-v1.5-f32")
# 设置LLM模型
Settings.llm = Ollama(model="qwen:7b", request_timeout=360.0
3. 使用Neo4j构建知识图谱
准备Neo4j
我们需要配置Neo4j数据库的连接信息。
username = "neo4j"
password = "your-neo4j-password"
url = "bolt://your-neo4j-url:7687"
database = "neo4j"
实例化Neo4jGraph KG索引
接下来,我们使用Llama-Index从文档中提取数据,并将其存储到Neo4j图数据库中。
from llama_index.core import KnowledgeGraphIndex, SimpleDirectoryReader
from llama_index.core import StorageContext