贪心算法:最佳游览线路(求连续数组的最大和)

Description

某旅游景区的街道成网格状。其中东西向的街道都是旅游街,南北向的街道都是林荫道。由于游客众多,旅游街规定为单行道,游客在旅游街上只能从西向东走,在林荫道上则既可从南向北,又可从北向南走。   阿龙想到这个旅游街区游玩。他的好友阿福给了他一些建议,用分值表示所有旅游街相邻两个路口之间的街道值得游览程度,分值是从-100到100的整数,所有林荫道不打分。所有分值不能全是负分。

阿龙可以从任何一个路口开始游览,在任何一个路口结束游览。请你写一个程序,帮助阿龙找一条最佳的旅游路线,使得这条路线的所有分值总和最大。

Input

第一行是两个整数m和n,之间用一个空格分开,m表示有多少条旅游街,n表示有多少条林荫道。接下来的m行一次给出了由北向南每条旅游街的分值。每行有n-1个整数,一次表示自西向东旅游街每一小段的分值。同一行相邻两个数之间用一个空格隔开

Output

输出最佳旅游路线的最大总分值。

Sample Input

3 6
-50 -47 36 -30 -23
17 -19 -34 -13 -8
-42 -3 -43 34 -45

Sample Output

84

问题分析

1、找出每列的最大值。
2、在由最大值组成的一维数组中寻找连续数组的最大和。

问题难点

寻找连续数组的最大和。

查了一下,好像有人写得比我 更全面

https://blog.csdn.net/dianweili3445/article/details/102236604?utm_medium=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.control&dist_request_id=a6b71551-def9-40c4-b0e1-5c940a8c1d19&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.control

我利用的应该是上述文章中的结论

dp[n] = max(0, dp[n-1]) + num[n]

代码

#include<iostream>
using namespace std;
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<string>
#include<algorithm>
#include<iomanip>
#include<map>
#include<queue>
#include<vector>

const int N=1e5+10;
int a[N];

int main()
{
	ios_base::sync_with_stdio(0);
	int m,n;
	while( cin >> m >> n )
	{
		n--;
		int i,j;
		int t;
		for(i=1;i<=m;i++)
			for(j=1;j<=n;j++)
			{
				cin >> t;
				if(i==1)
					a[j]=t;
				else
					a[j]= a[j] > t ? a[j]:t;
			}
		t=0;
		int sum=0;
		for(i=1;i<=n;i++)
		{
			t+=a[i];
			if(t<0)
				t=0;
			if(t>sum)
				sum=t;
		}
		cout << sum << endl;
	}
	return 0;
}
### 图论中的最佳游览路径规划算法实现 在图论中,最佳游览路径规划通常涉及找到一条满足特定条件的路径,使得总成本最低或者收益最大。以下是几种常见的用于解决此类问题的算法及其适用场景。 #### Dijkstra算法 Dijkstra算法是一种经典的单源最短路径算法,适用于加权有向图或无向图,并假设边权重均为非负数。该算法通过维护一个优先队列来逐步扩展距离起点最近的节点,直到到达目标节点为止[^1]。 ```python import heapq def dijkstra(graph, start): distances = {node: float('inf') for node in graph} distances[start] = 0 priority_queue = [(0, start)] while priority_queue: current_distance, current_node = heapq.heappop(priority_queue) if current_distance > distances[current_node]: continue for neighbor, weight in graph[current_node].items(): distance = current_distance + weight if distance < distances[neighbor]: distances[neighbor] = distance heapq.heappush(priority_queue, (distance, neighbor)) return distances ``` 此代码实现了基于堆优化版本的Dijkstra算法,其中`graph`是一个字典形式表示的邻接表结构,键为节点名,值为指向其他节点及其对应边权重的映射关系[^1]。 #### Floyd-Warshall算法 当需要计算每一对顶点之间的最短路径时,可以采用Floyd-Warshall算法。这是一种动态规划方法,能够处理带负权重的情况(只要不存在负环),时间复杂度较高O(),适合于稠密图的应用场合[^1]。 ```python def floyd_warshall(graph): n = len(graph) dist = [[float('inf')] * n for _ in range(n)] # 初始化矩阵 for u in range(n): for v, w in enumerate(graph[u]): if w != 0 and u != v: dist[u][v] = w for k in range(n): for i in range(n): for j in range(n): if dist[i][k] + dist[k][j] < dist[i][j]: dist[i][j] = dist[i][k] + dist[k][j] return dist ``` 这里假定输入图为二维数组形式,零代表没有直接连接;如果两结点间存在连线,则填入相应长度作为代价。 #### 贪心策略下的旅行商问题(TSP)近似解法 对于完全遍历所有景点并返回起始位置的要(即TSP问题), 可尝试利用贪心思想构建初始可行方案后再进一步改进。尽管这种方法无法保证全局最优性,但在某些条件下仍可提供较为满意的解答[^2]。 ```python from itertools import permutations def tsp_greedy(graph, start=0): unvisited = set(range(len(graph))) path = [] total_cost = 0 curr = start while unvisited: next_city = min(unvisited - {curr}, key=lambda city: graph[curr][city]) total_cost += graph[curr][next_city] path.append(next_city) unvisited.remove(next_city) curr = next_city # 返回到出发点 total_cost += graph[path[-1]][start] path.insert(0, start) return path, total_cost ``` 上述函数接受参数`graph`, 它应是以列表嵌套列表的形式给出的距离矩阵; `start`指定旅程开端的位置索引默认设为首项[^2]。 #### 总结 针对不同类型的游览路径规划需可以选择不同的算法加以应对。若是单纯追某固定地点至其余各处间的最快抵达方式则推荐使用Dijkstra或是Bellman-Ford等单源最短路径解工具;要是关心整个网络内部任意两点相互可达性的评估指标的话那么Floyd-Warshall不失为一种有效手段;至于涉及到全面覆盖型的任务像经典TSP难题那样,除了穷举外还可以借助启发式搜索技术比如遗传算法、模拟退火以及蚁群系统等等寻次优级答案[^1]^[]^2].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值