自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(215)
  • 资源 (8)
  • 问答 (2)
  • 收藏
  • 关注

原创 【2025新版本】【谷粒商城版】Kubernetes

在 Kubernetes(K8s)集群的安装和管理过程中,kubeadmkubelet和kubectl组件作用适用对象kubeadm初始化和管理 Kubernetes 集群集群管理员kubelet运行在每个节点上,管理 Pod 和容器Kubernetes 节点kubectl用于操作 Kubernetes 资源的命令行工具开发者 & 运维。

2025-03-18 22:11:38 793

原创 【求助】【建议放弃】【谷粒商城版】Kubernetes

在 Kubernetes(K8s)集群的安装和管理过程中,kubeadmkubelet和kubectl组件作用适用对象kubeadm初始化和管理 Kubernetes 集群集群管理员kubelet运行在每个节点上,管理 Pod 和容器Kubernetes 节点kubectl用于操作 Kubernetes 资源的命令行工具开发者 & 运维。

2025-03-18 17:22:48 1044

原创 k8s-coredns-CrashLoopBackOff 工作不正常

本文作者: slience_me原因分析:通过对问题的追踪,在github issue找到 CoreDNS pod goes to CrashLoopBackOff State你需要修改 Kubernetes 中的 CoreDNS 配置,具体操作步骤如下:步骤 1: 修改 CoreDNS 配置ConfigMap步骤 2: 修改 配置修改 中的 配置,当前配置为:你需要将其修改为指向外部 DNS 服务器,比如 Google 的公共 DNS 服务器 或 (Cloudflare DNS)。例如,

2025-03-18 10:29:30 773

原创 基于VMware的虚拟机集群搭建

集群搭建

2025-03-17 22:09:28 613

原创 ElasticSearch

ElasticSearch

2025-02-23 22:08:41 902

原创 FRP内网穿透

FRP内网穿透

2025-02-19 19:20:17 678

原创 【指令集】Nginx

在目录下创建每个站点的配置文件。每个.conf文件中可以包含你要为特定站点设置的 Nginx 配置,比如server块和其他必要的指令。例如,site1.confserver {listen 80;假设你已经在~/nginx目录下安装了 Nginx,现在你可以按照自定义路径来配置你的站点。Nginx 的配置文件通常位于。修改站点配置路径:例如,将站点配置文件放在目录下,并在nginx.conf中使用includehttp {......配置站点文件:在目录下创建站点配置文件。例如,

2025-02-15 19:39:17 1203

原创 【前端】ES6新特性汇总

ES6新特性汇总

2025-02-12 16:51:23 421

原创 【Ubuntu】服务器系统重装&SSH&xrdp&cuda

更新系统安装 NVIDIA 驱动添加 CUDA 存储库:根据 CUDA 下载页面获取存储库地址并添加。安装 CUDA 工具包设置环境变量:编辑.bashrc,添加 CUDA 相关路径。验证安装:运行nvidia-smi和nvcc -V验证安装是否成功。通过这些步骤,你应该能够在 Ubuntu 上顺利安装 CUDA 工具包,并开始使用 GPU 加速你的计算任务。

2024-10-24 13:55:50 1297

原创 ubuntu多版本cuda如何指定cuda版本

本文作者: slience_me在 Ubuntu 系统上选择和管理 CUDA 的多个版本可以通过以下步骤进行:你可以通过以下命令查看当前安装的 CUDA 版本:1.2 下载并安装所需的 CUDA 版本你可以从 NVIDIA CUDA Toolkit 下载页面 下载你需要的 CUDA 版本。选择你的操作系统(Linux)、架构(x86_64)、发行版(Ubuntu)和版本,然后按照提示下载并安装。每个 CUDA 版本都会安装在不同的目录中,例如 , 等。你可以通过设置环境变量 和修改 来切换不同的

2024-06-21 14:56:27 1948

原创 【论文笔记合集】LSTNet之循环跳跃连接

本文作者: slience_me文章仅作为个人笔记论文链接这句话提到了LSTNet,它是一种用于时间序列预测的方法。LSTNet引入了卷积神经网络(CNNs)和递归跳跃连接(recurrent-skip connections),以捕捉时间序列数据中的短期和长期时间模式。具体来说,LSTNet使用了卷积神经网络来处理时间序列数据,这使得模型能够有效地捕捉数据中的局部模式和趋势。卷积层在时间维度上进行滑动窗口的操作,从而可以识别数据中的局部特征。此外,LSTNet还引入了递归跳跃连接,这是一种从当前时间步向

2024-03-14 14:49:31 784 2

原创 【论文笔记合集】ARIMA 非平稳过程通过差分转化为平稳过程

本文作者: slience_me这句话提到了许多时间序列预测方法通常从经典工具开始,并提到了其中的一个经典工具是ARIMA模型。ARIMA(自回归综合移动平均模型)是一种经典的时间序列预测方法,它通过将非平稳过程通过差分转化为平稳过程来解决预测问题。在时间序列分析中,许多时间序列数据都具有非平稳性,即它们的统计特性(如均值和方差)随着时间而变化。ARIMA模型通过对时间序列进行差分操作,将原始序列转换为一个平稳的序列,然后在这个平稳序列上建立自回归和移动平均模型,以进行预测。因此,这句话指出了ARIMA作为

2024-03-14 10:56:41 1348 1

原创 【论文笔记合集】Transformers in Time Series A Survey综述总结

Transformers在自然语言处理和计算机视觉的诸多任务中取得了更优的性能,这也引起了时间序列社区的广大的兴趣。在Transformers的众多优点中,捕获远程依赖关系和交互的能力对于时间序列建模特别具有吸引力,从而在各种时间序列应用中取得了令人兴奋的进展。在本文中,作者团队系统地审查Transformer计划的时间序列建模,突出他们的优点以及局限性。该文章从两个角度去审视时间序列Transformers的发展网络结构 : 总结了Transformers,以适应时间序列分析的挑战,已作出的调整和修改。

2024-03-13 10:56:25 2613 1

原创 注意力、自注意力和多头注意力的区别

理解注意力(Attention)、自注意力(Self-Attention)和多头注意力(Multi-Head Attention)之间的区别非常重要,因为它们是自然语言处理(NLP)和深度学习模型中关键的组件。总之,自注意力是一种特殊类型的注意力机制,用于在输入序列内部建立元素之间的关系;而多头注意力是一种扩展形式,使用多个并行的自注意力头来捕获不同的关注点,以更全面地理解输入序列。

2024-03-12 15:34:31 1381

原创 绝对位置编码与相对位置编码区别

绝对位置编码(Absolute Positional Encoding)和相对位置编码(Relative Positional Encoding)是用于在Transformer等模型中处理序列数据时引入位置信息的两种不同方法。

2024-03-12 10:32:49 803

原创 encoding和embedding的区别

Embedding 更多地关注于将数据映射到低维度空间以捕捉其语义信息,而 Encoding 则更多地关注于将数据转换为特定格式或表示的过程。在某些情况下,两者的概念可能会有所重叠,但它们通常在不同的上下文中使用。

2024-03-12 10:15:38 1710 1

原创 【项目实战】谷粒学院项目回顾

谷粒学院实战汇总

2024-02-03 13:19:48 1939 5

原创 【已解决】安装不同版本的nodejs环境以及版本切换

安装不同版本的nodejs环境以及版本切换

2024-02-02 11:19:26 2325

原创 GitHub图床&Typora&PicGo相关配置

GitHub图床&Typora&PicGo相关配置

2024-01-20 19:01:59 789

原创 关于去除信号中的直流分量效果演示(零频率分量)

关于去除信号中的直流分量效果演示(零频率分量)

2024-01-20 17:56:47 3692

原创 【论文笔记合集】TimesNet之TimesBlock详解

TimesNet之TimesBlock详解

2024-01-19 21:18:39 3186 1

原创 【论文笔记合集】TimesNet之FFT详解

TimesNet之FFT详解

2024-01-19 16:52:13 3931 10

原创 关于python环境变量相关的配置汇总(venv虚拟环境/conda环境/pip相关)

python环境变量的配置,包括anaconda环境,venv环境和系统环境的配置

2024-01-18 20:10:24 1648

原创 Linux上Anaconda安装教程

anaconda安装教程

2024-01-18 19:48:27 4518

原创 【论文笔记合集】卷积神经网络之深度可分离卷积(Depthwise Separable Convolution)

【论文笔记合集】卷积神经网络之深度可分离卷积(Depthwise Separable Convolution)

2024-01-16 15:08:32 2940 1

原创 【已解决】Pytorch RuntimeError: expected scalar type Double but found Float

本文作者: slience_me在训练模型时候,将数据集输入到网络中去,在执行卷积nn.conv1d()的时候,报出此错误报错堆栈信息原因分析:tensor的数据类型dtype不正确这个错误通常是由于数据类型不匹配导致的。在PyTorch中,张量有不同的数据类型,如float32(FloatTensor)和float64(DoubleTensor)等。在进行计算时,PyTorch要求输入的张量数据类型要与操作或模型所期望的数据类型一致,否则会出现这个错误。例如,如果你的模型或操作期望输入的数据类

2024-01-08 16:11:05 7116

原创 【已解决】Authentication required to refresh system repositories等类似问题

暂无

2024-01-04 18:44:02 1691

原创 【2024】Linux漏洞修复合集

2024 Linux漏洞修复合集

2024-01-03 15:21:07 5238 2

原创 深度生成模型之GAN的评估 ->(个人学习记录笔记)

深度生成模型之GAN的评估

2024-01-02 17:19:16 604

原创 深度生成模型之图像翻译GAN ->(个人学习记录笔记)

深度生成模型之图像翻译GAN

2024-01-02 16:50:27 877

原创 深度生成模型之数据生成GAN ->(个人学习记录笔记)

深度生成模型之数据生成GAN

2024-01-02 16:10:27 729

原创 深度生成模型之GAN优化目标设计与改进 ->(个人学习记录笔记)

深度生成模型之GAN优化目标设计与改进

2024-01-02 13:49:33 916

原创 深度生成模型之GAN基础 ->(个人学习记录笔记)

深度生成模型之GAN优化目标设计与改进

2024-01-02 11:11:55 724

原创 深度生成模型之自编码器与变分自编码器 ->(个人学习记录笔记)

深度生成模型之自编码器与变分自编码器

2024-01-02 10:56:38 560

原创 【机器学习合集】深度生成模型 ->(个人学习记录笔记)

深度生成模型

2023-12-30 19:41:26 919

原创 【Leetcode合集】1457. 二叉树中的伪回文路径

给你一棵二叉树,每个节点的值为 1 到 9。我们称二叉树中的一条路径是 「」的,当它满足:路径经过的所有节点值的排列中,存在一个回文序列。请你返回从根到叶子节点的所有路径中路径的数目。

2023-11-25 20:48:36 1149

原创 【Leetcode合集】20. 有效的括号

给定一个只包括'('')''{''}''['']'的字符串s,判断字符串是否有效。'()[]{}'

2023-11-25 12:00:19 785

原创 【Leetcode合集】2824. 统计和小于目标的下标对数目

给你一个下标从开始长度为n的整数数组nums和一个整数target,请你返回满足且的下标对(i, j)的数目。

2023-11-24 08:49:12 742

原创 【Leetcode合集】1410. HTML 实体解析器

编写一个函数来查找字符串数组中的最长公共前缀。如果不存在公共前缀,返回空字符串""。「HTML 实体解析器」 是一种特殊的解析器,它将 HTML 代码作为输入,并用字符本身替换掉所有这些特殊的字符实体。⁄给你输入字符串text,请你实现一个 HTML 实体解析器,返回解析器解析后的结果。

2023-11-23 10:14:57 1335

原创 【Leetcode合集】14. 最长公共前缀

编写一个函数来查找字符串数组中的最长公共前缀。如果不存在公共前缀,返回空字符串""。

2023-11-22 20:36:55 488

【进程调度实现C++】先来先服务 短进程优先 优先级调度(抢占非抢占式) 包含文档

【进程调度实现C++】先来先服务 短进程优先 优先级调度(抢占非抢占式) 包含文档 一、设计题目 1 二、设计目的 1 三、设计原理及方案 1 3.1 开发环境 1 3.2 功能需求 1 3.3 概要设计 1 四、详细设计 2 4.1 先来先服务算法 2 4.2 短作业优先调度算法 3 4.3 优先级调度算法 4 五、运行结果 6 六、设计总结与体会 9 七、附录 10 由主程序部分输入进程的数量,然后循环初始化进程结构体数组,相关信息有进程代号、到达时间、服务时间、优先级、记录开始运行时刻、记录结束运行的时刻、周转事件、等待时间、带权周转时间、可用标识等信息,分别调用四个算法,先来先服务调度算法、短作业优先调度算法、非抢占式优先级调度算法和抢占式优先级调度算法。然后各个算法输出运行结果。最后根据平均周转时间和平均带权周转时间进行算法评估并显示结果。 先来先服务调度算法:根据进程到达的时间为依据,对进程结构体数组按照“到来时间”进行升序排序,遍历进程结构体数组,逐个为之分配处理机,使之投入运行。该进程一直运行到完成或发生某事件而阻塞后才放弃处理机。 短作业优先调度算法:对进程结构

2022-06-08

【java课设+源代码+注释】文件加密

【java课设+源代码+注释+文档】文件加密 程序功能简介 该程序整体有6个功能: 功能1: 存储路径,单击按钮触发文件选择器,仅能选择文件夹 功能2: 文件路径,单击按钮触发文件选择器,仅能选择文件 功能3: 简单加密,通过简单的移位对文件的内容进行加密 功能4: 简单解密,通过简单的与加密相反的移位对文件的内容进行解密 功能5: 复杂加密,通过对不同的字符采取不同的移位对文件的内容进行加密 功能6: 复杂解密,通过对不同的字符采取与加密相反的移位对文件的内容进行解密 图形化界面: 该界面应包含标题,保存路径按钮,保存路径的文本框,文件路径按钮,文件路径的文本框,简单加密按钮,简单解密按钮,复杂加密按钮,复杂解密按钮。修改各个组件的变量名称,并给相应的按钮添加监听器,添加单击事件。 加密算法: 简单加密算法:简单移位算法,将所有字符向同一方向移位。 简单解密算法:简单移位算法,将所有字符向同反方向移位。 复杂加密算法:复杂移位算法,将不同的字符向不同的方向移位。 复杂加密算法:复杂移位算法,将不同的字符向不同的反方向移位。

2022-06-04

DS_code.zip

里边有数据结构的实现代码,内涵20个cpp文件

2022-01-07

java课设【文件加密】内置图形化界面

质量保值

2021-10-28

线性表实现代码(内涵顺序表静态动态分配,循环,单双链表)

线性表实现代码(内涵顺序表静态动态分配,循环,单双链表)

2021-10-27

栈的代码实现(顺序栈链栈)

栈的代码实现(顺序栈链栈)

2021-10-27

python知识点xmind文件

内容全面,你可以放心下载

2020-11-29

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除