【数据处理】Python对CMIP6数据进行插值——详细解析实现(附源码)

Python对CMIP6数据进行插值

写在前面—为什么要写这篇博客?

小编最近接触到一个气候方面的项目,然后需要利用到CMIP6数据,需要对其进行数据插值,小编也是第一次接触这个数据,所以就想着学习一下如何利用Python对数据进行插值。在对数据插值之前,我们首先要了解一下我们的数据是什么样子的,也就是对CMIP6数据以及nc文件有个简单的了解。对源数据有个
简单了解之后,我们就可以选择合适的方法对数据进行插值。


一、引言

在气候科学和地球数据分析中,数据插值是一项基础且关键的任务。由于不同模型或观测数据的空间分辨率、层次结构存在差异,将数据统一到标准网格是后续分析的前提。本文结合一个实际的气候数据处理项目,详细介绍如何利用Python实现数据插值。

代码概览

代码主要功能包括:

  1. 数据预处理:调整经度范围、识别关键变量。
  2. 数据区域裁剪: 裁剪目标区域的数据。
  3. 垂直插值:将数据插值到指定深度层次。
  4. 水平插值:将数据映射到规则网格。
  5. 多线程处理:加速大规模文件处理。
  6. 文件合并与气候态计算:生成时间序列完整的数据集及异常分析。
思维导图

在这里插入图片描述


二、数据预处理

要想做好数据预处理,首先就要先了解CMIP6数据以及NC文件,关于CMIP6数据以及NC文件的的介绍可以参考:

原始数据可能包含不规则网格或非标准变量名,预处理阶段需解决以下问题:

  1. 变量识别:不同的模式可能有不同的变量名,因此我们在处理数据之前,首先要识别变量名称。本次数据处理用的变量名称主要有 thetao, lon, lat, time, level; 因此我们首先根据先验知识定义了一个变量别名表,如下所示:
VAR_MAPS = {
    'thetao': ['votemper', 'thetao', 'pottmp', 'TEMP'],
    'tauu': ['tauu', 'sozotaux', 'uflx', 'TAUX'],
    'tauv': ['tauv', 'sometauy', 'vflx', 'TAUY'],
    'lon': ['lon', 'longitude', 'nav_lon', 'LONN359_360'],
    'lat': ['lat', 'latitude', 'nav_lat', 'LAT'],
    'lev': ['lev', 'depth', 'deptht', 'level', 'olevel', 'LEV1_13'],
    'time': ['time', 'TIME', 'time_counter'],
}
  1. 查找变量:根据预定义的变量别名表(如thetao可能对应votemperTEMP等),动态匹配数据中的变量名。
keys = list(ds.variables.keys())
# 示例:动态识别变量名
var = next((v for v in keys if v in config.VAR_MAPS['var']), None)
lon_var = next((v for v in keys if v in config.VAR_MAPS['lon']), None)
lat_var = next((v for v in keys if v in config.VAR_MAPS['lat']), None)
time_var = next((v for v in keys if v in config.VAR_MAPS['time']), None)
lev_var = next((v for v in keys if v in config.VAR_MAPS['lev']), None)
  1. 经度标准化:将经度范围从[-180°, 180°]转换为[0°, 360°],避免插值时的边界问题。
if lon_var and ds[lon_var].min() < 0:
    ds[lon_var] = xr.where(ds[lon_var] < 0, ds[lon_var] + 360, ds[lon_var])

三、数据区域裁剪

我们在插值的时候可能并不需要全球的区域,所以我们可以进行区域裁剪来降低计算量,具体实现如下:

lon_mask = (ds[lon_var] >= config.LON_RANGE.start) & (ds[lon_var] <= config.LON_RANGE.stop)
lat_mask = (ds[lat_var] >= config.LAT_RANGE.start) & (ds[lat_var] <= config.LAT_RANGE.stop)
mask = (lon_mask & lat_mask).compute()  # 显式计算布尔掩码
ds_cropped = ds.where(mask, drop=True)

四、插值

(一) 垂直插值

利用xarrayinterp方法,将数据插值到预设深度(如5m、20m等):

ds_vert = ds.interp({lev_var: config.NEW_DEPTH}, method='linear')

(二) 水平插值

使用scipy.interpolate.griddata实现二维网格插值,支持不规则网格数据:

  • 输入:原始经纬度(展平为1D数组)及对应的变量值。 由于不同的模式经纬度的构造方式可能不一致,所以在正式插值之前要先把原始数据的经纬度进行预处理,具体如下:
def handle_2d_grid(lon: np.ndarray, lat: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
    """处理不规则网格展平(兼容2D非正交网格)"""
    if len(lon.shape) > 1:
        lon = lon.flatten()
        lat = lat.flatten()
    else:
        lat_2d, lon_2d = np.meshgrid(lat, lon, indexing='ij')
        lon, lat = lon_2d.flatten(), lat_2d.flatten()
    return lon, lat
  • 目标网格:根据配置生成规则网格(如180*360)。 具体如下:
target_lon = config.GRID_DEF[config.DENSITY]['lon']
target_lat = config.GRID_DEF[config.DENSITY]['lat']
grid_lon, grid_lat = np.meshgrid(target_lon, target_lat)
  • 插值方法:采用线性插值。
new_data = griddata((src_lon, src_lat), current_data.flatten(), (grid_lon, grid_lat), method='linear')

五、保存插值好的文件

保存为netcdf文件,具体代码如下:

coords = {
           'time': ds[time_var].values,
           'lev': config.NEW_DEPTH,
           'lat': config.GRID_DEF[config.DENSITY]['lat'],
           'lon': config.GRID_DEF[config.DENSITY]['lon'],
       }
dims = ['time', 'lev', 'lat', 'lon']
output_ds = xr.Dataset(
          {var: (dims, interp_data)},
          coords=coords
      )
 # 保存文件 ----------------------------------------------------------
output_path = os.path.join(output_dir, f"{os.path.splitext(file_name)[0]}{config.INTER_NAME}{config.SUFFIX}.nc")
output_ds.to_netcdf(output_path)
output_ds.close()  # 显式关闭输出数据集

六、文件合并与气候态计算

  1. 文件合并:将插值后的文件按时间维度拼接,生成完整数据集并保存。
datasets = [xr.open_dataset(file) for file in filtered_files]
combined_ds = xr.concat(datasets, dim='time').sortby('time')
# 保存合并文件
merged_path = os.path.join(merged_output_dir, f"{var_name}{config.MERGE_NAME}{config.SUFFIX}.nc")
combined_ds.to_netcdf(merged_path)
combined_ds.close()
  1. 气候态计算:选定起止时间,按月计算多年平均气候态,并生成异常数据(实际值减气候态)。
# 选择指定时间范围内的数据
ds = ds.sel(time=slice(start_date, end_date))
# 计算气候态(按月平均)
climatology = ds.groupby('time.month').mean(dim='time')
# 计算异常
anomaly = ds.groupby('time.month') - climatology
# 保存结果
climatology_path = os.path.join(output_dir, f"{var_name}{config.CLIMA_NAME}{config.SUFFIX}.nc")
anomaly_path = os.path.join(output_dir, f"{var_name}{config.ANOMALY_NAME}{config.SUFFIX}.nc")
climatology.to_netcdf(climatology_path)
anomaly.to_netcdf(anomaly_path)

七、代码优化技巧

  • 内存优化:分块读取数据(xarraychunks参数)减少内存占用。
with xr.open_dataset(file_path, chunks={'time': 1}) as ds:
  • 异常处理:捕获并记录处理失败的文件,支持重试机制。
  • 日志记录:通过logging模块记录运行状态,便于调试。

八、多线程处理

通过concurrent.futures.ProcessPoolExecutor实现多进程并行处理,显著提升大量文件的处理效率:

  • 动态线程数:根据CPU核心数、内存限制和文件数量自动调整线程数。
  • 内存管理:使用resource模块限制进程内存,避免系统崩溃。
# 设置内存限制(单位:GB)
resource.setrlimit(resource.RLIMIT_AS, (config.MAX_MEMORY_GB * 1024**3,))

九、全部代码

import os
import time
import logging
import numpy as np
import xarray as xr
from scipy.interpolate import griddata
from scipy.interpolate import NearestNDInterpolator
# from xesmf import Regridder
import concurrent.futures
import sys
import warnings
from typing import List, Tuple, Dict
import resource
from concurrent.futures import ProcessPoolExecutor
import logging
import sys
# 配置日志记录
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s [%(levelname)s] %(message)s',
    handlers=[
        logging.FileHandler("data_inter.log"),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)


# 配置参数(可抽离为单独配置文件)
class Config:
    """全局配置参数类"""
    DENSITY = '512'
    NEW_DEPTH = np.array([5.0, 20.0, 40.0, 60.0, 90.0, 120.0, 150.0])
    # NEW_DEPTH = np.array([5.0, 20.0])
    VAR_MAPS = {
        'var': ['votemper', 'thetao', 'pottmp', 'TEMP', 'tauu', 'sozotaux', 'uflx', 'TAUX', 'tauv', 'sometauy', 'vflx', 'TAUY'],
        'thetao': ['votemper', 'thetao', 'pottmp', 'TEMP'],
        'tauu': ['tauu', 'sozotaux', 'uflx', 'TAUX'],
        'tauv': ['tauv', 'sometauy', 'vflx', 'TAUY'],
        'lon': ['lon', 'longitude', 'nav_lon', 'LONN359_360'],
        'lat': ['lat', 'latitude', 'nav_lat', 'LAT'],
        'lev': ['lev', 'depth', 'deptht', 'level', 'olevel', 'LEV1_13'],
        'time': ['time', 'TIME', 'time_counter'],
        'start_dates': {'ORAS5': '1958-01-01',
                        'CMIP6': '1850-01-01',
                        'GODAS': '1980-01-01',
                        'SODA': '1871-01-01', },
        'end_dates': {'ORAS5': '1979-12-31',
                      'CMIP6': '2014-12-31',
                      'GODAS': '2021-12-31',
                      'SODA': '1979-12-31'}
    }

    MAX_MEMORY_GB = 1024  # 最大内存限制
    SUFFIX = '_py'
    INTER_NAME = '_interpolated'
    MERGE_NAME = '_merged'
    ANOMALY_NAME = '_anomaly'
    CLIMA_NAME = '_climatology'
    # 定义经度和纬度范围
    LON_RANGE = slice(0, 360)  # 经度范围
    LAT_RANGE = slice(-90, 90)  # 纬度范围
    start = LAT_RANGE.start
    end = LAT_RANGE.stop
    num = end-5
    GRID_DEF = {
        '512': {
            'lon': np.linspace(0, 360, 180),
            'lat': np.concatenate((
                np.linspace(start, -6, num),
                np.linspace(-5, 5, 21),
                np.linspace(6, end, num)
            ))
        },
        '25': {
            'lon': np.linspace(0, 360, 144),
            'lat': np.linspace(-90, 90, 72),

        },
        '55': {
            'lon': np.linspace(0, 360, 72),
            'lat': np.linspace(-90, 90, 36),

        },
        '11': {
            'lon': np.linspace(0, 360, 360),
            'lat': np.linspace(-90, 90, 180),

        },
    }

warnings.filterwarnings('ignore')

def handle_2d_grid(lon: np.ndarray, lat: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
    """处理不规则网格展平(兼容2D非正交网格)"""
    if len(lon.shape) > 1:
        lon = lon.flatten()
        lat = lat.flatten()
    else:
        lat_2d, lon_2d = np.meshgrid(lat, lon, indexing='ij')
        lon, lat = lon_2d.flatten(), lat_2d.flatten()
    return lon, lat

def setup_memory_limit(config: Config):
    """设置进程内存限制"""
    try:
        mem_limit = config.MAX_MEMORY_GB * 1024 ** 3
        resource.setrlimit(
            resource.RLIMIT_AS,
            (mem_limit, mem_limit)
        )
        logger.info(f"内存限制设置为 {config.MAX_MEMORY_GB}GB")
    except ValueError as e:
        logger.warning(f"内存限制设置失败: {str(e)}")

def preprocess_dataset(ds: xr.Dataset, config: Config) -> xr.Dataset:
    """跳过坐标重命名,仅处理经度范围"""
    print("开始进行数据预处理...")
    try:
        # 直接查找原始经度变量并标准化范围
        keys = list(ds.variables.keys())
        lon_var = next((v for v in keys if v in config.VAR_MAPS['lon']), None)
        if lon_var and ds[lon_var].min() < 0:
            ds[lon_var] = xr.where(ds[lon_var] < 0, ds[lon_var] + 360, ds[lon_var])
        print("数据预处理完成。")
        return ds
    except Exception as e:
        logger.error(f"预处理失败: {str(e)}")
        raise

def merge_subpattern_files(sub_pattern_dir: str, merged_output_dir: str, var_name: str, config: Config) -> None:
    """合并指定目录下所有包含特定变量的 *_interp.nc 文件"""
    # 获取所有待合并文件
    files = [
        os.path.join(sub_pattern_dir, f)
        for f in sorted(os.listdir(sub_pattern_dir))
        if f.endswith(f'{config.INTER_NAME}{config.SUFFIX}.nc')
    ]
    if not files:
        raise FileNotFoundError(f"无待合并文件于目录: {sub_pattern_dir}")

    # 筛选包含目标变量的文件
    filtered_files = []
    for file in files:
        with xr.open_dataset(file) as ds:
            if var_name in list(ds.variables.keys()):
                filtered_files.append(file)

    if not filtered_files:
        raise ValueError(f"目录 {sub_pattern_dir} 中无 {var_name} 变量文件")

    # 合并文件
    datasets = [xr.open_dataset(file) for file in filtered_files]
    combined_ds = xr.concat(datasets, dim='time').sortby('time')

    # 保存合并文件
    merged_path = os.path.join(merged_output_dir, f"{var_name}{config.MERGE_NAME}{config.SUFFIX}.nc")
    combined_ds.to_netcdf(merged_path)
    combined_ds.close()
    print(f"{var_name} 合并完毕,保存至: {merged_path}")

    compute_climatology_anomaly(merged_path, merged_output_dir, var_name, config)


def compute_climatology_anomaly(merged_path: str, output_dir: str, var_name: str, config: Config) -> None:
    """计算气候态和异常"""
    with xr.open_dataset(merged_path) as ds:

        start_date, end_date = config.VAR_MAPS['start_dates'][pattern_name], config.VAR_MAPS['end_dates'][pattern_name]
        ds = ds.sortby('time')
        # 选择指定时间范围内的数据
        ds = ds.sel(time=slice(start_date, end_date))

        # 计算气候态(按月平均)
        climatology = ds.groupby('time.month').mean(dim='time')

        # 计算异常
        anomaly = ds.groupby('time.month') - climatology

        # 保存结果
        climatology_path = os.path.join(output_dir, f"{var_name}{config.CLIMA_NAME}{config.SUFFIX}.nc")
        anomaly_path = os.path.join(output_dir, f"{var_name}{config.ANOMALY_NAME}{config.SUFFIX}.nc")

        climatology.to_netcdf(climatology_path)
        anomaly.to_netcdf(anomaly_path)

def horizontal_interpolation(data: np.ndarray, src_lon: np.ndarray,
                             src_lat: np.ndarray, config: Config) -> np.ndarray:
    """支持三维和四维数据的水平插值"""
    target_lon = config.GRID_DEF[config.DENSITY]['lon']
    target_lat = config.GRID_DEF[config.DENSITY]['lat']
    grid_lon, grid_lat = np.meshgrid(target_lon, target_lat)

    print("src_lon:", src_lon.shape, "src_lat:",  src_lat.shape)
    print("开始水平插值...")
    final_data = []
    for time_idx in range(data.shape[0]):
        print(f"处理时间步 {time_idx + 1}/{data.shape[0]}")
        if data.ndim == 4:
            # 温度数据分块处理
            lev_data = []
            for depth_idx in range(data.shape[1]):
                current_data = data[time_idx, depth_idx, ...].flatten()
                new_data = griddata((src_lon, src_lat),
                                    current_data,
                                    (grid_lon, grid_lat),
                                    method='linear')

                lev_data.append(new_data)
                print(config.var_type, config.pattern_name, config.sub_pattern_name, time_idx, depth_idx, new_data.shape, np.nanmin(new_data), np.nanmax(new_data))
                print()
            final_data.append(lev_data)
        else:
            # 处理风数据
            current_data = data[time_idx, ...].flatten()
            new_data = griddata((src_lon, src_lat),
                                current_data,
                                (grid_lon, grid_lat),
                                method='linear')
            print(config.var_type, config.pattern_name, config.sub_pattern_name, time_idx, new_data.shape, np.nanmin(new_data), np.nanmax(new_data))
            print()
            final_data.append(new_data)
    final_data = np.array(final_data)
    return final_data


def process_single_file(file_info: Tuple[str, str, str, str, Config]) -> bool:
    """直接通过原始变量名提取数据"""
    file_name, input_dir, output_dir, pattern, config = file_info
    file_path = os.path.join(input_dir, file_name)
    try:
        with xr.open_dataset(file_path, chunks={'time': 1}) as ds:
            # ds = preprocess_dataset(ds)
            print(ds)
            keys = list(ds.variables.keys())
            print(keys)
            # 动态识别原始变量名 -------------------------------------------------
            # 1. 查找目标变量
            var = next((v for v in keys if v in config.VAR_MAPS['var']), None)
            if not var:
                raise ValueError("未找到温度变量(thetao)")
            is_temp_var = var in config.VAR_MAPS['thetao']
            # 2. 查找经纬度变量
            lon_var = next((v for v in keys if v in config.VAR_MAPS['lon']), None)
            if lon_var and ds[lon_var].min() < 0:
                ds[lon_var] = xr.where(ds[lon_var] < 0, ds[lon_var] + 360, ds[lon_var])
            lat_var = next((v for v in keys if v in config.VAR_MAPS['lat']), None)
            time_var = next((v for v in keys if v in config.VAR_MAPS['time']), None)

            # 4. 查找垂直层变量
            if is_temp_var:
                lev_var = next((v for v in keys if v in config.VAR_MAPS['lev']), None)
                if not lev_var:
                    raise ValueError("缺失垂直维度")
                ds_vert = ds.interp(
                    {lev_var: config.NEW_DEPTH},
                    method='linear',
                    kwargs={'fill_value': 'extrapolate'}
                )
            else:
                ds_vert = ds

            ds = ds_vert
            # 3. 裁剪数据
            lon_mask = (ds[lon_var] >= config.LON_RANGE.start) & (ds[lon_var] <= config.LON_RANGE.stop)
            lat_mask = (ds[lat_var] >= config.LAT_RANGE.start) & (ds[lat_var] <= config.LAT_RANGE.stop)
            mask = (lon_mask & lat_mask).compute()  # 显式计算布尔掩码
            ds_cropped = ds.where(mask, drop=True)
            ds_vert = ds_cropped

            # 5. 水平插值(使用原始经纬度)
            src_lon = ds_vert[lon_var].values
            src_lat = ds_vert[lat_var].values
            data = ds_vert[var].values

            src_lon, src_lat = handle_2d_grid(src_lon, src_lat)

            print("ds_vert:", data.shape)
            interp_data = horizontal_interpolation(data, src_lon, src_lat, config)
            print(type(interp_data), type(ds_vert))

            # 构建动态输出数据集
            if is_temp_var:
                coords = {
                    'time': ds[time_var].values,
                    'lev': config.NEW_DEPTH,
                    'lat': config.GRID_DEF[config.DENSITY]['lat'],
                    'lon': config.GRID_DEF[config.DENSITY]['lon'],
                }
                dims = ['time', 'lev', 'lat', 'lon']
            else:
                coords = {
                    'time': ds[time_var].values,
                    'lat': config.GRID_DEF[config.DENSITY]['lat'],
                    'lon': config.GRID_DEF[config.DENSITY]['lon'],
                }
                dims = ['time', 'lat', 'lon']

            output_ds = xr.Dataset(
                {var: (dims, interp_data)},
                coords=coords
            )
            # 保存文件 ----------------------------------------------------------
            output_path = os.path.join(output_dir, f"{os.path.splitext(file_name)[0]}{config.INTER_NAME}{config.SUFFIX}.nc")
            output_ds.to_netcdf(output_path)
            output_ds.close()  # 显式关闭输出数据集
        del ds, output_ds  # 主动释放内存
        return True

    except Exception as e:
        logger.error(f"处理失败 {file_path}: {str(e)}", exc_info=True)
        return False


def batch_processor(input_dir: str, merged_dir: str, output_dir: str,
                    pattern: str, max_workers: int, config: Config) -> None:
    """安全批处理控制器"""
    setup_memory_limit(config)

    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
        print(f"输出目录 {output_dir} 不存在,已创建。")

    if not os.path.exists(merged_dir):
        os.makedirs(merged_dir)
        print(f"合并目录 {merged_dir} 不存在,已创建。")

    files = [ f
        for f in sorted(os.listdir(input_dir))
        if f.endswith('.nc') and not f.startswith('._')
    ]

    ds0 = xr.open_dataset(os.path.join(input_dir, files[0]), chunks={'time': 1})
    ds1 = xr.open_dataset(os.path.join(input_dir, files[-1]), chunks={'time': 1})
    keys0 = list(ds0.variables.keys())
    keys1 = list(ds1.variables.keys())
    var_name0 = next((v for v in keys0 if v in config.VAR_MAPS['var']), None)
    var_name1 = next((v for v in keys1 if v in config.VAR_MAPS['var']), None)

    total_files = len(files)
    print(f"发现 {total_files} 个待处理文件。")

    # 自动计算最佳线程数
    cpu_count = os.cpu_count() or 1
    safe_workers = min(
        cpu_count * 2,  # 超线程优化
        max_workers or 64,  # 默认上限64
        len(files),
        (config.MAX_MEMORY_GB * 1024) // 2  # 每个进程约2GB内存
    )
    print(f"使用 {safe_workers} 个工作线程。")

    # 使用进程池+重试机制
    with concurrent.futures.ProcessPoolExecutor(max_workers=safe_workers) as executor:
        futures = {executor.submit(process_single_file, (f, input_dir, output_dir, pattern, config)): f for f in files}
        completed_files = 0
        for future in concurrent.futures.as_completed(futures):
            completed_files += 1
            print(f"已完成 {completed_files}/{total_files} 个文件的处理。")
            file_path = futures[future]
            try:
                result = future.result()
                if not result:
                    logger.warning(f"需重试文件: {file_path}")
                    # 加入重试队列
            except Exception as e:
                logger.error(f"执行异常: {file_path} - {str(e)}")


    print("主处理流程完成,开始合并文件...")
    try:
        merge_subpattern_files(output_dir, merged_dir, var_name0, config)
        if var_name1 != var_name0:
            merge_subpattern_files(output_dir, merged_dir, var_name1, config)


    except Exception as e:
        logger.error(f"合并失败: {str(e)}", exc_info=True)

if __name__ == "__main__":
    # 配置日志记录(确保多进程安全)
    logger = logging.getLogger(__name__)


    def process_subpattern(var_type: str, sub_pattern_name: str, pattern_name: str) -> None:
        """处理单个子模式的独立函数(每个进程独立配置)"""

        local_config = Config()
        local_config.DENSITY = '512'
        local_config.sub_pattern_name = sub_pattern_name
        local_config.var_type = var_type
        local_config.pattern_name = pattern_name

        # CESM系列需要特殊处理深度(不影响其他进程)
        if sub_pattern_name in ['CESM2', 'CESM2-WACCM']:
            local_config.NEW_DEPTH = local_config.NEW_DEPTH * 100

        try:
            batch_processor(
                input_dir=f"/mnt/samba_data8/{pattern_name}/{pattern_name}_{var_type}/{sub_pattern_name}",
                output_dir=f"/mnt/samba_data7/{pattern_name}/{local_config.DENSITY}{local_config.INTER_NAME}/{var_type}/{sub_pattern_name}",
                merged_dir=f"/mnt/samba_data7/{pattern_name}/{local_config.DENSITY}{local_config.MERGE_NAME}/{var_type}/{sub_pattern_name}",
                pattern=pattern_name,
                max_workers=4,  # 调整内层并行度
                config=local_config
            )
        except Exception as e:
            logger.error(f"处理失败 {sub_pattern_name}/{var_type}: {str(e)}", exc_info=True)
            raise


    # 原始配置
    sub_pattern_names = [
        'ACCESS-CM2', 'ACCESS-ESM1-5', 'BCC-CSM2-MR', 'CAMS-CSM1-0', 'CanESM5-1',
        'CMCC-CM2-SR5', 'E3SM-1-1', 'EC-Earth3', 'EC-Earth3-CC', 'FGOALS-f3-L',
        'FGOALS-g3', 'FIO-ESM-2-0', 'INM-CM4-8', 'INM-CM5-0', 'NorESM2-LM',
        'CESM2-WACCM-FV2', 'CNRM-ESM2-1', 'GISS-E2-1-G', 'CMCC-ESM2', 'EC-Earth3-Veg',
        'NESM3', 'EC-Earth3-Veg-LR', 'CAS-ESM2-0', 'CanESM5', 'CIESM', 'GFDL-CM4',
        'GFDL-ESM4', 'NorESM2-MM', 'CNRM-CM6-1', 'MCM-UA-1-0', 'MPI-ESM1-2-HR',
        'MPI-ESM1-2-LR', 'CanESM5-CanOE', 'SAM0-UNICON', 'E3SM-1-0', 'HadGEM3-GC31-LL',
        'UKESM1-0-LL', 'IPSL-CM6A-LR', 'KIOST-ESM', 'HadGEM3-GC31-MM', 'MRI-ESM2-0',
        'MIROC6', 'MIROC-ES2L', 'CESM2', 'CESM2-WACCM'
    ]


    pattern_name = 'CMIP6'
    if pattern_name != 'CMIP6':
        sub_pattern_names = ['']
    var_types = ['tauuv', 'thetao']

    # 创建外层进程池(根据系统资源调整max_workers)
    with ProcessPoolExecutor(max_workers=45) as executor:
        futures = []
        # 生成所有任务
        for var_type in var_types:
            for sub_pattern_name in sub_pattern_names:
                future = executor.submit(
                    process_subpattern,
                    var_type,
                    sub_pattern_name,
                    pattern_name
                )
                futures.append(future)

        # 等待并处理结果
        for future in concurrent.futures.as_completed(futures):
            try:
                future.result()
            except Exception as e:
                logger.error(f"子任务异常: {str(e)}")

    logger.info("所有子模式处理完成")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值