Windows安装Pytorch3d

本文介绍了在Windows系统上安装Pytorch3d的详细过程,包括创建和激活虚拟环境,安装匹配版本的Pytorch、CUDA、NVIDIACUB,以及修改和编译Pytorch3d源码。关键步骤包括选择正确的软件版本,设置环境变量,以及使用VisualStudio2019的命令提示符进行安装。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Windows安装Pytorch3d

1.前提:

  1. 安装Visual Studio 2019 【我记得必须是2017-2019之间的版本,我一开始用的是2022的版本就安装不了】网址
  2. pytorch和pytorch3d、cuda和NVIDIA CUB版本需要相互对应

pytorch和pytorch3d版本对应关系如下:https://github.com/facebookresearch/pytorch3d/releases

cuda和NVIDIA CUB版本对应关系如下:https://github.com/NVIDIA/cub/releases?page=1

本人配置如下:

GPU:1050Ti

CUDA:11.1

python:3.8

pytorch:1.8.0

pytorch3d:0.7.0

NVIDIA CUB:cub-1.9.10-1

2.安装

2.1 创建虚拟环境

首先打开cmd命令窗口,创建并激活虚拟环境

conda create -n pytorch3d python=3.8
conda activate pytorch3d

2.2 安装pytorch

conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge

2.3 安装其他依赖

conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install jupyter
pip install scikit-image matplotlib imageio plotly opencv-python
pip install black usort flake8 flake8-bugbear flake8-comprehensions

2.4 下载cub

cuda和NVIDIA CUB版本对应关系如下(不全,完整查看网址):

CUB ReleaseIncluded In
2.0.1CUDA Toolkit 12.0
2.0.0TBD
1.17.2TBD
1.17.1TBD
1.17.0TBD
1.16.0TBD
1.15.0NVIDIA HPC SDK 22.1 & CUDA Toolkit 11.6
1.14.0NVIDIA HPC SDK 21.9
1.13.1CUDA Toolkit 11.5
1.13.0NVIDIA HPC SDK 21.7
1.12.1CUDA Toolkit 11.4
1.12.0NVIDIA HPC SDK 21.3
1.11.0CUDA Toolkit 11.3
1.10.0NVIDIA HPC SDK 20.9 & CUDA Toolkit 11.2
1.9.10-1NVIDIA HPC SDK 20.7 & CUDA Toolkit 11.1
1.9.10NVIDIA HPC SDK 20.5
1.9.9CUDA Toolkit 11.0
1.9.8-1NVIDIA HPC SDK 20.3
1.9.8CUDA Toolkit 11.0 Early Access
1.9.8CUDA 11.0 Early Access

根据自己的CUDA版本选择对应的cub版本,下载网址

1

下载此压缩文件并解压到自己想安装的位置

而后添加环境变量,变量值为解压缩的位置:

在这里插入图片描述

2.5 下载pytorch3d

pytorch和pytorch3d版本对应关系如下:https://github.com/facebookresearch/pytorch3d/releases

这里的对应版本就看Version下第一行There are builds for PyTorch 1.12.0, but no longer 1.7.x.,可以看出最高支持1.12.0,且不再支持1.7.x的版本。

根据自己的pytorch版本选择对应的pytorch3d版本

在这里插入图片描述

下载此压缩文件并解压到自己想安装的位置,我解压的位置是E:\pytorch3d-0.7.0(按照我之前看的博文最好应该解压到虚拟环境的Lib\site-packages目录下)

2.6 安装MinGW

其他教程中有包含这一步,我的电脑很久前就装过MinGW,所以此处省略。

2.7 安装pytorch3d

2.7.1 修改setup.py

打开pytorch3D文件夹,找到setup.py文件并打开,将extra_compile_args = {"cxx": ["-std=c++14"]} 修改为: extra_compile_args = {"cxx": []}

2.7.2 安装pytorch3d

使用管理员身份打开x64 Native Tools Command Prompt for VS 2019,进入pytorch3d文件夹的路径并激活虚拟环境。

cd E:\pytorch3d-0.7.0
E:
set DISTUTILS_USE_SDK=1
set PYTORCH3D_NO_NINJA=1
python setup.py install

等待代码执行完成即可。

2.8 验证

导入pytorch3d未报错
在这里插入图片描述

参考资料

  1. pytorch3D Windows下安装经验总结
  2. Windows下Pytorch3d的安装方法
### 如何在 Windows 系统中安装 PyTorch3D 库 要在 Windows 上成功安装 PyTorch3D 库,需遵循特定的依赖配置以及安装流程。以下是详细的说明: #### 1. 配置环境需求 为了确保兼容性和稳定性,在安装前需要确认以下软件版本: - **Python**: 推荐使用 Python 3.9.0 版本[^2]。 - **PyTorch**: 使用与 CUDA Toolkit 对应的 PyTorch 版本。例如,如果使用的是 CUDA Toolkit 11.1,则推荐安装 PyTorch 1.8.0 或更高版本。 - **Visual Studio**: 安装 Visual Studio 2019 及其 C++ 工具链,这是编译过程中必需的支持工具。 #### 2. 安装基础依赖项 在安装 PyTorch3D 前,先通过 `pip` 或 `conda` 安装必要的依赖包。这些依赖包括但不限于: - `pytorch`: 根据硬件支持情况选择 CPU 或 GPU 的对应版本。 - `torchvision` 和 `torchaudio`: 这些是 PyTorch 生态中的重要扩展模块。 可以通过以下命令完成基本依赖的安装(假设已启用 CUDA 支持): ```bash pip install torch==1.8.0 torchvision torchaudio cudatoolkit=11.1 -f https://download.pytorch.org/whl/torch_stable.html ``` 对于仅运行于 CPU 的场景,可以忽略 `-f ...` 参数并移除 `cudatoolkit` 部分。 #### 3. 安装 PyTorch3D 一旦上述依赖准备就绪,即可执行 PyTorch3D安装操作。官方建议的方式如下所示: ```bash pip install pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py3.9_cu111_pyt1.8/index.html ``` 此命令会自动解析适合当前系统的预构建二进制文件,并将其下载到环境中。 > 注意:整个过程通常耗时约五分钟,具体时间取决于网络状况和设备性能。 #### 4. 测试安装是否成功 验证安装完成后可正常工作非常重要。尝试导入该库来测试连接性: ```python import pytorch3d print(pytorch3d.__version__) ``` 如果没有抛出任何错误消息,则表明安装顺利完成。 --- ###
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值