基于红外数据集(FLIR)训练YOLOv4

1、引言

毕业设计是基于热红外图像的目标检测系统设计,老板要求做一些横向和纵向的实验对比作为支撑,自己基于项目构建的车载红外数据集只有4000多张,加上是自己手动标注的,直接用于实验对比说服力不够,加上标注的精度跟开源的标准数据集相比有一定差距,所以前期的实验还是要在公共数据集上做,最后再迁移到自己的数据集上来。

实验室之前采购了FLIR的红外摄像头,后面就关注到他们开源了一个比较大的带真实标签的红外数据集,官网地址为FLIR数据集,跟我手头数据集的应用场景非常相似,所以决定以该数据集作为前期实验的主要基准。后续的系统是要移植到NVIDIA Jetson NX上做实时目标检测,对目标检测网络的速度有比较高的要求,网上检索到目前SOTA的网络中YOLOv4各方面性能都不错,而且官网配备了详细的训练、调参、测试等教程,简直不要太贴心,所以先从YOLOv4开始我的对比之旅吧!

PS:后续如果实验顺利且有时间的话,我争取把后续的嵌入式算法移植部分也分享到网上,嘿嘿嘿

2、一个检索各领域SOTA文章的网站分享

在这个网站上可以找到各个领域目前排名靠前的文章以及其相应代码,感觉非常有用,点击这里

3、FLIR数据集

1)FLIR数据集下载地址,我在官网下载了很久都没成功,后面还是一个中科大的同学分享给我的(跪谢),有需要用于科研的同学下载不了的话可以通过博客联系我分享。

2)FLIR数据集简介:
一共有三个数据集,只有第一个缩减版的可供下载,其他两个是需要钱钱的,不过第一个对于我来说也够用了,训练集有8862张图像、测试集1366张图像,外加一个视频切割成的图像4224张。
在这里插入图片描述
可供下载的这个数据集只标注了person、car、bicycle、dog、other vehicle这五类目标,具体情况如下:
在这里插入图片描述
数据下载解压后会得到一个文件夹,里面包含了以下文件夹:
在这里插入图片描述
两个PDF文件是关于数据集的详细解释,我就不赘述啦,大家自己看哈

3)FLIR数据集处理
官网标签的数据格式是基于coco数据集的,也就是保存在.json文件中,要在YOLOv4上进行训练需要先转换标签的格式,我的操作步骤为先转voc格式(xml),再转YOLO格式,这部分话不多说,直接上代码,具体的解释我都放到代码里了:

json-to-xml.py

#-*-coding:utf-8-*-
import glob
import json
from lxml.etree import Element, SubElement, tostring
from xml.dom.minidom import parseString

classes = ['people', 'bicycle', 'car', 'vehicle']

# 定义json文件操作函数,读取json文件中的包围框信息和类别信息,并用于构建xml文件,这部分看不懂的可以先了解下json文件
def list_json(json_path, output_xml_path):
    json_files = glob.glob(json_path + "*.json")   # 列出文件夹中的所有后缀为.json的文件,用于批量操作

    # 对每一个.json文件进行操作
    for json_file in json_files:
        # 以只读方式打开json文件
        with open(json_file, 'r') as f:
            json_message = json.load(f)       # 解析json文件, 官网的json文件中由'annotation'和'image'组成
            annotation = json_message['annotation']
            image = json_message['image']

            objects = []                      # 用于存储'annotation'中的bbox和category
            for obj in annotation:
                # 提取每个候选框中目标的类别,我只提取了people、bicycle、car和other vehicle,因为dog的训练标签太少了
                # 类别转换基于官网的FLIR Thermal Starter Dataset Introduction文件
                category = int(obj['category_id'])
                if category == 1:
                    class_name = 'people'
                elif category == 2:
                    class_name = 'bicycle'
                elif category == 3:
                    class_name = 'car'
                elif category == 91:
                    class_name = 'vehicle'
                else:
                    continue

                # 提取每个候选框的坐标
<think>好的,我现在需要帮助用户解决如何使用FLIR ADAS v2数据集训练YOLOv8n模型的问题。首先,我需要回顾用户提供的引用内容,看看是否有相关的步骤或建议可以直接应用。用户已经给出了一些关于YOLOv5和YOLOv8的训练信息,可能需要从中提取适用的部分,并调整到YOLOv8n的特定需求。 首先,数据准备是关键。根据引用[1]和引用[4],FLIR数据集需要特定的处理,特别是时间序列的分割不能随机,必须按时间段划分。此外,用户可能需要将数据集转换为YOLO格式,比如每个图像对应一个.txt的标注文件。另外,引用[4]提到单通道图像的处理,这可能意味着需要处理红外图像,可能需要调整模型的输入通道数。 接下来是配置文件的设置。YOLOv8可能需要一个类似于YOLOv5的YAML配置文件,指定数据路径、类别数等信息。用户需要确保数据集的路径正确,并且类别名称与数据集中的标签对应。例如,FLIR数据集的类别可能有“person”、“car”等。 然后是模型训练部分。根据引用[2],训练命令可能涉及指定图像大小、epochs、数据配置文件、模型结构以及预训练权重。对于YOLOv8n,用户可能需要使用相应的模型配置文件,比如yolov8n.yaml,并可能从预训练权重开始微调,或者从头开始训练。需要注意的是,YOLOv8的命令行接口可能与YOLOv5有所不同,可能需要使用yolo命令而不是train.py脚本。 另外,引用[3]提到了接续训练的方法,这可能在大规模数据集上有用,但用户目前可能不需要,除非他们打算扩展训练数据。不过这一点可以作为优化或后续步骤的建议。 关于优化,引用[1]提到了优化步骤,可能包括学习率调整、数据增强等。用户可能需要调整超参数,或者使用YOLOv8内置的优化策略,比如自动调整锚框或者使用不同的优化器。 推理与可视化部分,用户需要验证模型的效果,使用验证集进行评估,并可视化检测结果。引用[4]中的博客提到检测效果在夜间有提升,这可能说明红外数据集的有效性,用户可能想强调这一点。 在生成相关问题时,需要考虑用户可能遇到的后续问题,比如如何处理单通道图像,如何调整模型结构,如何进行数据增强,或者如何评估模型性能等。 现在需要确保回答的结构清晰,按照步骤分点说明,同时引用提供的资料。例如,在数据准备阶段引用[4]的时间序列分割注意事项,以及在训练命令部分参考引用[2]的格式,但调整为YOLOv8的语法。 可能需要注意的几点: 1. YOLOv8是否支持直接使用YOLOv5的数据格式,或者是否需要转换。 2. 单通道输入的处理,YOLOv8n默认是3通道,如何修改以适应红外图像。 3. 训练命令的具体参数,可能需要查阅YOLOv8的文档,但用户提供的引用中YOLOv5的命令行示例可以作为参考,调整成YOLOv8的格式。 可能存在的疑问是,用户是否已经准备好数据集,是否需要指导数据转换的具体步骤。但根据问题描述,用户可能已经了解YOLOv5的处理流程,需要迁移到YOLOv8。 总结回答的步骤应该是:数据准备→配置文件→模型训练→优化→推理验证,并在每个步骤中引用相关的资料。同时,确保代码示例符合YOLOv8的语法,例如使用yolo detect train而不是train.py。</think>### 使用FLIR ADAS v2数据集训练YOLOv8n模型的步骤 #### 1. **数据准备** - **数据集格式转换** 将FLIR ADAS v2数据集转换为YOLO格式,每张图像对应一个`.txt`标注文件,格式为`(class_id, x_center, y_center, width, height)`。注意**按时间序列划分训练集/验证集**,避免随机采样导致时间相关性破坏[^4]。 - **单通道图像处理** FLIR数据集红外单通道图像,需修改YOLOv8n模型的输入通道数(默认3通道改为1通道)。可在数据加载阶段直接读取灰度图像,或在配置文件中指定通道参数。 - **目录结构示例** ```text FLIR_ADAS_v2/ ├── images/ │ ├── train/ │ └── val/ └── labels/ ├── train/ └── val/ ``` #### 2. **配置文件设置** - **数据集配置文件(`FLIR.yaml`)** 创建YAML文件定义数据集路径、类别名称和数量: ```yaml path: ../FLIR_ADAS_v2 train: images/train val: images/val names: 0: person 1: bicycle 2: car # 其他类别... nc: 14 # FLIR ADAS v2总类别数 ``` - **模型配置文件** 使用`yolov8n.yaml`,修改`channels`参数为1以适配单通道输入: ```yaml backbone: [[-1, 1, Conv, [64, 3, 2]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 # ...其他层配置 ] head: # ...检测头配置 ``` #### 3. **模型训练** - **从零开始训练** ```bash yolo detect train data=FLIR.yaml model=yolov8n.yaml imgsz=640 epochs=300 device=0 ``` - **使用预训练权重微调** 下载COCO预训练权重(`yolov8n.pt`),添加`pretrained=True`参数: ```bash yolo detect train data=FLIR.yaml model=yolov8n.pt imgsz=640 epochs=300 device=0 ``` 注意:YOLOv8命令行接口已集成训练功能,无需单独执行Python脚本[^2]。 #### 4. **优化策略** - **数据增强** 启用Mosaic、MixUp等增强策略(默认开启),提升模型对红外特征的泛化能力。 - **学习率调整** 使用余弦退火或线性衰减策略,例如: ```yaml lr0: 0.01 # 初始学习率 lrf: 0.1 # 最终学习率系数(lr0 * lrf) ``` - **锚框优化** 通过`autoanchor=True`自动计算适配FLIR数据集的锚框尺寸[^1]。 #### 5. **推理与验证** - **模型测试** ```bash yolo detect val model=path/to/best.pt data=FLIR.yaml ``` - **可视化检测结果** 使用`predict`模式生成检测效果图: ```bash yolo detect predict model=path/to/best.pt source=FLIR_ADAS_v2/images/val ``` 红外目标检测效果可参考[^4]中描述的夜间场景性能提升。
评论 80
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值