图的遍历是指,从图中某一个顶点开始,访问且仅访问图中结点一次,分为深度优先遍历和广度优先遍历,两种遍历方法分别类似树的先根遍历和层序遍历
为了能够对图中所有节点进行访问且仅访问一次,我们需要考虑虾下面几个问题:
1. 不同于树,对于一个图而言,图中结点是没有收尾之分的,所以需要我们指定一个要访问的第一个结点。
2. 在遍历结点的过程中,可能会有回路,造成死循环
3. 一个结点通常和若干个节点邻接,要保证一个结点所有的邻接结点按照某种次序都被访问到
下面具体介绍两种遍历方法:
1.深度优先遍历
算法思想:对于图中所有未被访问的结点,从某个顶点v出发,访问顶点,然后对顶点的邻接点进行深度优先遍历。即,每次访问当前结点后,首先访问当前结点的第一个邻接结点,递归。通俗点儿说,对于一个结点,找到他的一个未被访问的邻接点就继续找邻接点的邻接点,直到当前被访问的点没有邻接点,然后在回过头来继续找没有被访问过的结点,找邻接……
算法过程
- 访问节点v,标记为已访问
- 查找v的未被访问的第一个邻接结点w
- 若w存在,则继续执行;否则算法结束
- 若w尚未被访问,则深度优先搜索w
- 查找v的w邻接结点的下一个邻接结点w,转到3
示例
结果
A->B->E->G->C->F->D->H->I
2.广度优先遍历
这里不写严谨的理论,我们可以根据字面意思来理解。在广度优先遍历中,会先访问A的一层所有邻居,然后是所有的二层邻居、所有三层邻居……,一层全部被访问之后采取访问下一层的结点。也就是所谓的“广度”优先。
那么,如何让程序去执行这个过程呢?类似二叉树的层序遍历,用一个队列保持访问过的结点的顺序,然后按照这个顺序来访问这些节点的邻接节点。个人认为,类似这种思想的重点是要想好,把谁入队列/栈,什么时候入队/栈,什么时候出队/栈。
算法过程
- 访问结点v,标为已访问
- 把v入队列
- 队列非空时继续,否则结束
- 出队列取得队头结点u
- 找u的第一个邻接点w
- 如果u的邻接点w不存在,则转3,否则循环如下:
- 如果w未被访问,则访问w,并标记为已经访问
- w入队列
- 找u的w邻接后的下一个邻接点w,转到6
示例:
我们可以这样理解这个过程,比如节点A有3个邻居,因为是广度优先,所以我们会先探测A的所有邻接结点,对于没有跟A直接邻接的节点,我们会在访问完A的直接邻接(也就是上面提到的第一层)之后再去访问,对于剩余节点的访问也需要一个顺序,首先访问B的邻居,然后是C的邻居,D的邻居。由于当前不访问,而是过会儿再访问,同时还要保证B的邻居、C的邻居、D的邻居的顺序访问,这符合队列“先进先出”的思想。所以我们采用队列存储。
结果:
A->B->C->D->E->F->G->H->I