解决“CUDA out of memory.”问题

在尝试运行更复杂的网络模型时,遇到了CUDA内存不足的问题,导致实验无法进行。错误信息显示16GB的GPU内存已不足以运行当前设置,因为已分配的内存超过了可用空间。解决方法是减小批处理大小,例如将原来的batch_size16改为batch_size8,这样可以有效缓解GPU内存压力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

今天在跑实验的时候,将网络模型改得更加复杂了,出现内存不够的报错提示:

RuntimeError: CUDA out of memory. Tried to allocate 1.22 GiB (GPU 1; 14.76 GiB total capacity; 2.65 GiB already allocated; 1.22 GiB free; 3.69 GiB reserved in total by PyTorch)

16GB的GPU都不够用了......

解决方法

将batch_size改小即可

# 原来的batch_size
--batch 16

# 改为
--batch 8