滑动窗口的最大值算法实现

51 篇文章 ¥59.90 ¥99.00
滑动窗口最大值算法利用双端队列在给定数组中找到每个位置的最大值。遍历数组时,将当前元素与队列对比,更新队列,确保队列始终包含窗口内的最大值。时间复杂度为O(n),空间复杂度为O(k)。Python实现代码及使用示例给出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

滑动窗口是一种常见的算法技巧,用于解决一些与连续子数组或子序列相关的问题。滑动窗口的最大值算法是其中的一种应用,它用于在一个给定数组中找到滑动窗口的每个位置上的最大值。

算法思想:
滑动窗口的最大值算法通过维护一个双端队列来实现。在遍历数组时,我们将当前元素与队列中的元素进行比较。如果当前元素大于队列中的元素,那么队列中的元素就不可能成为窗口中的最大值,因此我们将其从队列中移除。然后,我们将当前元素添加到队列的尾部。同时,我们还需要检查队列头部的元素是否已经超出了滑动窗口的范围,如果是,则将其从队列中移除。

源代码实现:
下面是用Python实现滑动窗口的最大值算法的代码:

from collections import deque

def maxSlidingWindow(nums, k)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值