- 博客(9)
- 收藏
- 关注
原创 运用llama.cpp将LoRA训练模型转换为GGUF,适配Ollama本地化部署,降低企业资源投入成本!(接上篇,AI实战系列)
本文介绍了企业如何利用LoRA训练结果实现大模型本地化部署。文章首先说明llama.cpp作为开源推理框架的特性,支持多系统运行和模型量化,降低企业部署成本。接着详细讲解操作步骤:1)安装llama.cpp;2)从LLaMA-Factory导出训练好的模型;3)将模型转换为GUFF格式;4)通过Ollama创建Modelfile并导入转换后的模型,最终实现本地部署使用。该方案为企业提供了一种安全、低成本的大模型私有化部署方案,特别适合对数据安全有要求的中小企业。
2025-07-23 18:12:35
480
原创 FineTune+LLaMA-Factory+DeepSeek+LoRA企业数据训练,全流程详细教程,构建AI电商客服等应用(AI实战系列,附实战经验)
本文针对企业垂直领域需求,介绍了如何使用LLaMA-Factory工具对开源大模型进行微调。相比通用大模型,微调更适合医疗、法律等专业领域,以及需要特定风格或降低服务成本的场景。文章详细演示了从环境搭建到模型训练的完整流程:通过Alpaca格式准备电商客服数据集(包含价格咨询、物流查询等场景),配置LLaMA-Factory参数,使用DeepSeek-1.5B模型进行LoRA微调。最后指出优化方向:选用更强基础模型、增加高质量数据、延长训练周期等。
2025-07-23 14:13:41
652
原创 企业知识管理混乱?RAG+LangChain+DeepSeek构建会思考的企业知识库!(AI实战系列,附有详细代码)
本文介绍了如何利用RAG技术搭建企业知识库,实现高效的知识管理和智能问答。主要内容包括:1)企业知识库、RAG、微调与蒸馏以及LangChain的概念介绍;2)使用LangChain框架实现全流程,包括文档加载、向量化处理、索引构建和问答系统开发;3)提供了Python代码示例,展示了从文档处理到问答实现的完整过程。文章还对比了不同模型的效果差异,并指出通过合理选择模型和优化提示词可以提升系统性能。该方案为企业提供了安全、高效的AI知识管理解决方案。
2025-07-12 13:22:49
731
原创 教你打造企业自有大模型(基于ollama、deepseek),走出定制化第一步,沉淀AI技术能力,让AI变成生产力!【AI实战系列】
企业私有化AI模型构建指南 本文介绍了如何为企业或个人构建专属大模型(LLM),重点基于Ollama平台实现模型定制化。实操步骤涵盖Modelfile编写、模型创建(ollama create)及交互测试(ollama run),为企业提供从0到1的轻量化AI落地方案。适合需要垂直领域定制、兼顾效率与隐私的场景应用。
2025-07-10 22:11:12
923
原创 DeepSeek本地运行全流程解析,企业私有化,数据安全、降本增效双搞定!含ollama命令聊天、chatbox界面聊天效果(AI实战系列,保姆级教程)
国内大语言模型快速发展,DeepSeek以开源、本地部署和中文优化优势脱颖而出。本文介绍了如何通过ollama工具在本地运行DeepSeek-R1等模型:1)安装ollama环境;2)下载模型文件;3)通过命令行或ChatBox可视化工具进行交互。该方法支持企业私有部署,保障数据安全,为AI项目落地提供基础方案,显著提升工作效率。
2025-07-10 15:21:12
464
原创 Centos 6.5中Nginx的安装.
本文基于CentOS 6.5环境,初步部署搭建Nginx,有利于认识Nginx,阅读之后,可以学会安装、测试及简单的维护。
2016-05-23 21:03:36
536
原创 《高性能网站建设指南》的阅读总结.
引言:去年的时候,公司的平台需要对访问速度等进行优化,大致的方向就是从缓存、压缩、减少请求等方面进行处理,不光需要对网络有一定的理解,也需要对浏览器的机制以及前端的技术等有些许的了解,在这个过程中,阅读了《高性能网站建设指南》,其中就描述了雅虎的工程师们,总结出的“性能黄金法则”:“只有10%~20%的最终用户响应时间花在了下载HTML文档上。其余的80%~90%时间花在了下载页面中的所有组件上”
2016-04-16 00:14:04
1552
转载 Tomcat catalina.out文件过大的解决方案整理.
解决Tomcat日志catalina.out文件过大的问题,主要是在相关博客中寻找了一些方案,也留做一个备忘。
2016-04-06 09:54:21
19929
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人