RT-DETR使用教程: RT-DETR使用教程
RT-DETR改进汇总贴:RT-DETR更新汇总贴
《A synergistic CNN-transformer network with pooling attention fusion for hyperspectral image classification》
一、 模块介绍
代码链接:https://github.com/chenpeng052/synergisticNet/tree/main
论文速览:
在高光谱影像 (HSI) 分类任务中,每个像素都被分类为特定的土地覆被类别或材料。卷积神经网络 (CNN) 和转换器已广泛用于提取 HSI 分类中的局部和非局部特征。最近的工作利用多尺度视觉变压器 (ViT) 来增强光谱特征捕获并产生有希望的结果。然而,大多数现有方法在有效联合使用空间光谱信息和在传播过程中跨层保留信息方面仍面临挑战。为了解决这些问题,我们提出了一个协同 CNN-Transformer 网络,用于 HSI 分类的汇集注意力融合,它协同利用 CNN 和 ViT 分别处理空间和光谱特征。具体来说,我们提出了一个双分支特征提取 (TBFE) 模块,该模块并行使用 3D 和 2D 卷积来全面提取 HSI 的光谱和空间特征。混合池化注意力 (HPA) 模块旨在聚合空间注意力。此外,采用级联变压器编码器进行全局光谱特征提取,并设计了简单而高效的跨层特征融合 (CFF) 模块,以减少前一网络层中关键信息的丢失。
总结:本文包含其代码中的HPA模块的使用方法。
⭐⭐本文二创模块仅更新于付费群中,往期免费教程可看下方链接⭐⭐
二、二创融合模块
2.1 相关二创模块及所需参数
该模块暂无二创。
2.2 更改yaml文件 (以自研模型加入为例)
打开更改ultralytics/cfg/models/rt-detr路径下的rtdetr-l.yaml文件,替换原有模块。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy, 技术指导QQ:2668825911⭐⭐
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 512]
# n: [ 0.33, 0.25, 1024 ]
# s: [ 0.33, 0.50, 1024 ]
# m: [ 0.67, 0.75, 768 ]
# l: [ 1.00, 1.00, 512 ]
# x: [ 1.00, 1.25, 512 ]
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy, 技术指导QQ:2668825911⭐⭐
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, CCRI, [128, 5, True, False]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 1, HPA, []]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 4, CCRI, [512, 3, True, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, CCRI, [1024, 3, True, False]]
head:
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9 input_proj.2
- [-1, 1, AIFI, [1024, 8]]
- [-1, 1, Conv, [256, 1, 1]] # 11, Y5, lateral_convs.0
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [6, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 13 input_proj.1
- [[-2, -1], 1, Concat, [1]]
- [-1, 2, RepC4, [256]] # 15, fpn_blocks.0
- [-1, 1, Conv, [256, 1, 1]] # 16, Y4, lateral_convs.1
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [4, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 18 input_proj.0
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
- [-1, 2, RepC4, [256]] # X3 (20), fpn_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
- [[-1, 16], 1, Concat, [1]] # cat Y4
- [-1, 2, RepC4, [256]] # F4 (23), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 24, downsample_convs.1
- [[-1, 11], 1, Concat, [1]] # cat Y5
- [-1, 2, RepC4, [256]] # F5 (26), pan_blocks.1
- [[20, 23, 26], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy, 技术指导QQ:2668825911⭐⭐
2.2 修改train.py文件
创建Train_RT脚本用于训练。
from ultralytics.models import RTDETR
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
if __name__ == '__main__':
model = RTDETR(model='ultralytics/cfg/models/rt-detr/rtdetr-l.yaml')
# model.load('yolov8n.pt')
model.train(data='./data.yaml', epochs=2, batch=1, device='0', imgsz=640, workers=2, cache=False,
amp=True, mosaic=False, project='runs/train', name='exp')
在train.py脚本中填入修改好的yaml路径,运行即可训。