Prototypical Networks for Few-shot Learning
- 论文链接:https://arxiv.org/abs/1703.05175
- 开源代码:https://github.com/jakesnell/prototypical-networks
- 发表时间:2017年6月
- 该论文属于metric_based
- 论文中心思想:经过神经网络学会一个映射,将所有样本映射到同一空间,每个类别样本存在一个原型(我理解就是每个聚类的中心),该原型就是对应类别所有样本embedding的均值。局里度量是欧式距离的平方,训练时,每个query set中样本embedding到所属类别的原型距离越近越好,到其他类别原型距离越远越好。
- 论文创新点:原型(即class_level representation)
- 算法结构
注:上如图J更新公式有一处错误,最后的 c k c_k ck应该为 c k ′ c_{k'} ck′。 - loss函数:
p ϕ ( y = k ∣ x ) = e x p ( − d ( f ϕ ( x ) , c k ) ) ∑ k ′ e x p ( − d ( f ϕ ( x ) , c k ′ ) ) p_{\phi}(y=k|x)=\frac{exp(-d(f_{\phi}(\mathbf{x}),\mathbf{c}_k))}{\sum_{k'}exp(-d(f_{\phi}(\mathbf{x}),\mathbf{c}_{k'}))} pϕ(y=k∣x)=∑k′exp(−d(fϕ<