few-shot learning几篇论文

Prototypical Networks for Few-shot Learning

  • 论文链接:https://arxiv.org/abs/1703.05175
  • 开源代码:https://github.com/jakesnell/prototypical-networks
  • 发表时间:2017年6月
  • 该论文属于metric_based
  • 论文中心思想:经过神经网络学会一个映射,将所有样本映射到同一空间,每个类别样本存在一个原型(我理解就是每个聚类的中心),该原型就是对应类别所有样本embedding的均值。局里度量是欧式距离的平方,训练时,每个query set中样本embedding到所属类别的原型距离越近越好,到其他类别原型距离越远越好。
  • 论文创新点:原型(即class_level representation)
  • 算法结构
    在这里插入图片描述
    在这里插入图片描述
    注:上如图J更新公式有一处错误,最后的 c k c_k ck应该为 c k ′ c_{k'} ck
  • loss函数:
    p ϕ ( y = k ∣ x ) = e x p ( − d ( f ϕ ( x ) , c k ) ) ∑ k ′ e x p ( − d ( f ϕ ( x ) , c k ′ ) ) p_{\phi}(y=k|x)=\frac{exp(-d(f_{\phi}(\mathbf{x}),\mathbf{c}_k))}{\sum_{k&#x27;}exp(-d(f_{\phi}(\mathbf{x}),\mathbf{c}_{k&#x27;}))} pϕ(y=kx)=kexp(d(fϕ<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤劳的凌菲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值