问答系统论文小记

此部分慢慢添加

Improving Response Selection in Multi-turn Dialogue Systems by Incorporating Domain Knowledge

  • 发表时间:2018
  • 解决问题:基于检索的多轮对话答案选择
  • 基本思想:将上下文和答案分别采用GRU进行编码,为了选出对上下文有贡献的答案中的词以及选出对答案有贡献的上下文语句,因此加入了注意力机制,这是创新点一;为了添加域信息,另外加了GRU,对答案中的每个词进行编码,编码维度与word embedding维度一致,如果词不在预设词典里,将编码后的向量置零,将每个词的word embedding 和此编码向量相加作为该词的最后embedding输入到encoder中进行编码,这是创新点二。然后对上下文和response编码后的向量求相似度得分。

Building Task-Oriented Dialogue Systems for Online Shopping

  • 发表时间:2017
  • 解决问题:任务型对话系统
  • 基本内容:该篇论文诠释了构建任务型对话系统的整个过程,该系统是针对线上购物提出的。本文介绍NLP的相关技术、数据挖掘以及众包的应用,帮助读者建立整个流程思路。通常任务型对话系统通过槽位填充实现,这种方法在系统冷启动时很难实现。本文未采用此种方法,本文方法流程为:问题理解模块(问题意图检测、产品类别、获取问题中<属性,属性值>对)->状态追踪->对话管理。该论文内容实用性很强。

LSTM-BASED DEEP LEARNING MODELS FOR NONFACTOID ANSWER SELECTION

  • 发表时间:2016
  • 解决问题: 检索型多轮对话
  • 基本内容:问题和答案做匹配,经典模型Bi-LSTM+余弦相似度,贡献在于:对Bi-LSTM的输出进行两个方面的操作:1)将Bi-LSTM的输出送入CNN+pooling,输入给余弦相似度计算;2)将Bi-LSTM的输出添加Attention机制,再经pooling层后进行余弦相似度计算。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤劳的凌菲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值