贝叶斯个性化排序(Bayesian Personalized Ranking, 以下简称BPR)
BPR是基于用户的隐式反馈,为用户提供物品的推荐,并且是直接对排序进行优化。目标是对每个用户进行物品的排序。
显式反馈:用户对物品的直接评分,如商品评分、电影评分
隐式反馈:用户对物品的交互行为,如浏览,购买等,
在现实生活中大部分数据都属于隐式反馈,可以从日志中获取。
目标
在BPR算法中,我们将任意用户u对应的物品进行标记,如果用户u在同时有物品i和j的时候点击了i,那么我们就得到了一个三元组<u,i,j>,它表示对用户u来说,i的排序要比j靠前。如果对于用户u来说我们有m组这样的反馈,那么我们就可以得到m组用户u对应的训练样本。
同时假设
1.每个用户之间的偏好行为相互独立,即用户u在商品i和j之间的偏好和其他用户无关。
2.同一用户对不同物品的偏序相互独立,也就是用户u在商品i和j之间的偏好和其他的商品无关。
>u符号要满足完全性、反对称性和传递性三个条件,如下:
最终希望得到矩阵W、H满足X和X¯最接近。
下面可参考:https://blog.csdn.net/ddydavie/article/details/84331584
https://www.cnblogs.com/pinard/p/9128682.html