博弈程序Alpha-Beta搜索算法

本文介绍了一种改进型的Alpha-Beta搜索算法,通过负极大值风格的搜索策略实现棋盘评估。该算法在递归过程中利用alpha和beta值进行剪枝,减少不必要的状态空间探索,提高搜索效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

负极大值风格的Alpha-Beta搜索算法

int alphabetaSearch(int depth,int alpha,int beta)//alpha是当前走棋方找到的最优局面的评分,找到更优的就覆盖它,beta是引发剪枝的值

{int value;
move MoveArray[128];
move mv;
int i;


if (depth==0)//返回当前局面的优势
return Eval();
int num=GenAllMove(MoveArray);
for (i=0;i<num;i++)
{
mv=MoveArray[i];
MakeMove(mv);
value=-alphabetaSearch(depth-1,-beta,-alpha);
UnMakeMove();
  if (value>=beta)
 return beta;
  if(value>alpha)
  {
alpha=value;
if(depth==MaxDepth)
BestMove=mv;
  
  }
}
return alpha;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值