矢量积与反对称矩阵:理论、性质与Python实现

在向量代数与矩阵理论中,矢量积(叉乘)与反对称矩阵之间存在着深刻而优雅的数学联系。这种联系不仅揭示了三维空间的几何结构,还为物理应用(如刚体力学)提供了强大的数学工具。本文将系统探讨这两者的定义、性质、相互关系以及在Python中的数值与符号实现。

矢量积的数学本质

在三维欧几里得空间 R 3 \mathbb{R}^3 R3 中,两个向量 a = [ a 1 , a 2 , a 3 ] ⊤ \mathbf{a} = [a_1, a_2, a_3]^\top a=[a1,a2,a3] b = [ b 1 , b 2 , b 3 ] ⊤ \mathbf{b} = [b_1, b_2, b_3]^\top b=[b1,b2,b3]矢量积定义为:

a × b = [ a 2 b 3 − a 3 b 2 a 3 b 1 − a 1 b 3 a 1 b 2 − a 2 b 1 ] \mathbf{a} \times \mathbf{b} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix} a×b= a2b3a3b2a3b1a1b3a1b2a2b1

这个运算具有深刻的几何意义:结果向量 c \mathbf{c} c 垂直于 a \mathbf{a} a b \mathbf{b} b 张成的平面,其模长 ∣ a × b ∣ = ∣ a ∣ ∣ b ∣ sin ⁡ θ |\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta a×b=a∣∣bsinθ 等于两向量构成的平行四边形面积。代数上,矢量积满足反交换律 a × b = − b × a \mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a} a×b=b×a,且与点积形成标量三重积 a ⋅ ( b × c ) \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) a(b×c),其几何意义是平行六面体的有向体积。

反对称矩阵的理论框架

一个 n × n n \times n n×n 实矩阵 A A A 被称为反对称矩阵(或斜对称矩阵),当且仅当它满足:

A ⊤ = − A A^\top = -A A=A

此定义蕴含两个直接推论:

  1. 主对角线元素满足 a i i = − a i i ⇒ a i i = 0 a_{ii} = -a_{ii} \Rightarrow a_{ii} = 0 aii=aiiaii=0
  2. 非对角线元素满足 a i j = − a j i a_{ij} = -a_{ji} aij=aji

三维空间中的反对称矩阵具有标准形式:

[ ω ] × = [ 0 − ω 3 ω 2 ω 3 0 − ω 1 − ω