NER论文笔记2-ACL2021

本文介绍了ACL2021上关于命名实体识别(NER)的三篇论文。首先,FEW-NERD构建了一个大规模小样本NER数据集,解决细粒度实体识别问题。接着,Locate and Label提出两阶段模型,改善嵌套NER的效率和准确性。最后,一种利用外部上下文检索和合作学习的方法提升了NER性能,达到最先进的精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

FEW-NERD: A Few-shot Named Entity Recognition Dataset

论文背景:小样本(few-shot)NER指基于少量标注信息的NER任务,由于许多领域的实体识别需要大量专业知识,从而难以人工标记,所以诞生了小样本NER,以图学习未标注的实体

小样本NER任务很少有公开的标准数据集

此前的方法是收集现有的受监督NER数据集,再将其重新投放到小样本环境中进行实证研究,但这些数据往往都是粗粒度的实体类型,而在实践中,大多数看不见的实体类型都是细粒度的,不能很好满足训练要求

论文贡献:建立了一个大规模人工标注的小样本NER数据集,包含8个粗粒度,66个细粒度实体类型,共188238句话,4601160个单词(均带有粗、细粒度标签)

是首个few-shot NER数据集,也是目前最大的人工NER数据集

数据集构建:N-way K-shot 采样策略,目的是采样N类标签,每一类不少于k个样本

数据标注采用人工标注

Locate and Label: A Two-stage Identifier for Nested Named Entity

论文背景:此前处理嵌套NER任务的主流方法是span-based模型,该方法将实体识别转化为span(连续的一段单词)分类问题,但是计算开销大,忽略了实体边界信息,不能充分利用部分与实体匹配的span信息,难以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值