FEW-NERD: A Few-shot Named Entity Recognition Dataset
论文背景:小样本(few-shot)NER指基于少量标注信息的NER任务,由于许多领域的实体识别需要大量专业知识,从而难以人工标记,所以诞生了小样本NER,以图学习未标注的实体
小样本NER任务很少有公开的标准数据集
此前的方法是收集现有的受监督NER数据集,再将其重新投放到小样本环境中进行实证研究,但这些数据往往都是粗粒度的实体类型,而在实践中,大多数看不见的实体类型都是细粒度的,不能很好满足训练要求
论文贡献:建立了一个大规模人工标注的小样本NER数据集,包含8个粗粒度,66个细粒度实体类型,共188238句话,4601160个单词(均带有粗、细粒度标签)
是首个few-shot NER数据集,也是目前最大的人工NER数据集
数据集构建:N-way K-shot 采样策略,目的是采样类标签,每一类不少于
个样本
数据标注采用人工标注
Locate and Label: A Two-stage Identifier for Nested Named Entity
论文背景:此前处理嵌套NER任务的主流方法是span-based模型,该方法将实体识别转化为span(连续的一段单词)分类问题,但是计算开销大,忽略了实体边界信息,不能充分利用部分与实体匹配的span信息,难以