原创性和引用说明:(没写就是没有,全是我自己的废话)kubernetes官方文档,2020年黑马快速入门(由于年代久远可能存在问题,比如架构大的方向上没问题,但是现在有些略微不同了,详细看新的文档),docker公司官方文档
1.什么是kubernetes呢?
官网是这么形容的:Kubernetes 也称为 K8s,是用于自动部署、扩缩和管理容器化应用程序的开源系统。
官网是这么介绍的:它将组成应用程序的容器组合成逻辑单元,以便于管理和服务发现。Kubernetes 源自 Google 15 年生产环境的运维经验,同时凝聚了社区的最佳创意和实践。
2.那么什么是容器(专指docker)呢?
#定义<kubernetes官网给的>
打包应用及其运行依赖环境的技术。
#deepseek给出的主机、虚拟机和容器的区别对比
三者的对比
特性 | 主机(物理机) | 虚拟机(VM) | 容器(Container) |
---|---|---|---|
虚拟化级别 | 无虚拟化 | 硬件级虚拟化 | 操作系统级虚拟化 |
隔离性 | 最高(物理隔离) | 高(完全隔离) | 较低(依赖内核隔离) |
性能 | 最高(无虚拟化开销) | 中等(有Hypervisor开销) | 高(接近原生) |
启动速度 | 慢(需启动硬件) | 较慢(启动完整OS) | 极快(秒级) |
资源占用 | 独占硬件 | 较高(每个VM需独立OS) | 极低(共享内核) |
适用场景 | 高性能计算、数据库 | 传统应用、多租户 | 微服务、云原生 |
#与IOC容器的区别:(我的不成熟理解)把docker看成沙盒隔离环境,把IOC看成new对实例的封装进行解耦
两者都是容器化思想的体现,但作用层面不同:
-
Docker是系统级的资源隔离容器
-
IOC是应用级的对象管理容器
现代云计算通常结合使用 VM + 容器(如K8s运行在VM上),兼顾隔离性和灵活性
3.那么为什么现在用容器多于虚拟机呢?
我很久之前在外网社区看到VM的图和container的一幅图,找不到了,我口述以后大家理解吧,容器和虚拟机大部分都相同只有在在hostOS运用不同技术生成环境,虚拟机在生成的环境中多了一个操作系统,从时间和空间的角度考虑,多一层操作系统的结构不仅仅多占了空间也降低了效率也降低了开销
4.容器管理工具
用于对于容器可以进行创建、启动、关闭、删除的虚拟机管理工具(嘿嘿,是不是和数据库管理工具一样都是增删改查,只是一个是对数据,一个是对于容器)(docker的docker-我的学习目标)(阿里的pouch,我现阶段之作了解)
5.容器编排部署工具
针对解决的问题:容器轻量化效率高但是不能简单的部署
解释:对容器应用进行编排
可以参考的工具
#1.docker公司的:machine ,compose(use YAML file<官方原文>),docker swarm
#2.mesos+marathon(csdn的链接参考,我没看完,因为目前用不到。Mesos和Marathon简介和浅析_mesos marathon-CSDN博客)
#3.kubernetes(重点)
6.Kubernetes
6.1kubernetes功能(官网10个,叫kubernetes特性)
#1 自动化上线和回滚
Kubernetes 会分步骤地将针对应用或其配置的更改上线,同时监视应用程序运行状况以确保你不会同时终止所有实例。如果出现问题,Kubernetes 会为你回滚所作更改。你应该充分利用不断成长的部署方案生态系统。(官网)
#2 服务发现和负载均衡
你无需修改应用来使用陌生的服务发现机制。Kubernetes 为每个 Pod 提供了自己的 IP 地址并为一组 Pod 提供一个 DNS 名称,并且可以在它们之间实现负载均衡。
#3自我修复
重新启动失败的容器,在节点死亡时替换并重新调度容器, 杀死不响应用户定义的健康检查的容器, 并且在它们准备好服务之前不会将它们公布给客户端
#4存储编排
自动挂载所选存储系统,包括本地存储、公有云提供商所提供的存储或者诸如 iSCSI 或 NFS 这类网络存储系统
#5Secret和配置管理
部署和更新 Secret 和应用程序的配置而不必重新构建容器镜像, 且不必将软件堆栈配置中的秘密信息暴露出来。
#6 自动装箱
根据资源需求和其他限制自动放置容器,同时避免影响可用性。 将关键性的和尽力而为性质的工作负载进行混合放置,以提高资源利用率并节省更多资源。
#7批量执行
除了服务之外,Kubernetes 还可以管理你的批处理和 CI 工作负载,在期望时替换掉失效的容器。
#8IPv4/IPv6双栈协议
为 Pod 和 Service 分配 IPv4 和 IPv6 地址
#9水平扩缩
使用一个简单的命令、一个 UI 或基于 CPU 使用情况自动对应用程序进行扩缩。
#10为扩展性设计
无需更改上游源码即可扩展你的 Kubernetes 集群。
7.k8s运用场景(1)(我这里以黑马k8s急速入门来进行学习)
#
背景:项目研发部门最近要进行应用基础环境迁移
需求:由原先的虚拟机环境迁移到k8s集群环境中,以便应对开发的快速部署和快速测试的需要
目标:构建k8s集群
基础:仅有对容器的基础应用
8.kubernetes的基础架构
8.1 应用部署架构分类
#1无中心节点架构
@GlusterFS
#2有中心节点的架构
@HDFS
@k8s
8.2 kubernetes集群架构
图源(Kubernetes 架构 | Kubernetes)(2025.4.3)
这里推荐阿里的一篇文章:11张图带你彻底了解Kubernetes架构,绝对要收藏的!-阿里云开发者社区
下面架构部分不全和图源的内容一样(稍微加了点补充内容,嗯,基于一点)<只是换了一个说法>,我只是在用费曼学习法学着(结束的地方我会说)(加了关键词,主要最近学的比较多,不加关键词,我学不太进去了):
#1整体构造
Kubernetes的构成:
*1 一个控制平面。控制平面管理集群中的工作节点和pod。
*2 一组用于运行容器化应用的工作机器组成,这些工作机器成为节点(Node)。每个集群至少需要一个工作节点来运行pod。工作节点托管着组成应用负载的Pod。
在生产环境中,控制平面通常跨多台计算机运行,而一个集群通常运行多个节点,以提供容错和高可用性。控制平面组件可以在集群中的任何节点上运行。 然而,为了简单起见,安装脚本通常会在同一个计算机上启动所有控制平面组件, 并且不会在此计算机上运行用户容器。 请参阅使用 kubeadm 构建高可用性集群中关于跨多机器安装控制平面的示例。(加单点:一台电脑有很多控制组件来控制大部分的节点)
#2控制平面组件
功能:
*1为集群做出全局决策,比如资源的调度
*2检测和响应集群事件,例如当不满足Deployment的replicas字段时,要启动新的pod
<注释>replicas:pod的副本,通过维护相同的实例确保可用性,可扩缩性和容错性
pod:集群上一组正在运行的容器
架构图:
##1kube-apisever<处理连接请求,控制平面的前端,实现kube-apiseve>
API服务器是Kubernetes控制平面组件,该组件公开了Kubernetes API,负责处理连接请求的工作。API服务器是Kubernetes控制平面的前端。
Kubernetes API服务器的主要实现是kube-apisever。
关于kube-apisever的说明
kube-apiserver
设计上考虑了水平扩缩,也就是说,它可通过部署多个实例来进行扩缩。你可以运行kube-apiserver
的多个实例,并在这些实例之间平衡流量。
##2 etcd
一致且高可用的键值存储,用作Kubernetes所有集群数据的后台数据库。
架构中提出:”如果你的 Kubernetes 集群使用 etcd 作为其后台数据库, 请确保你针对这些数据有一份 备份计划“
etcd集群在k8s中相关内容参考(我没来的及全看完):(有些值得学习和分析的点,之后幼师教案再说)操作 Kubernetes 中的 etcd 集群 | Kubernetes
关于与redis的区别参考:(一致性不同可能是一致性协议的问题,数据库一般用2CP协议,kubernetes用的raft协议)etcd 和 Redis 的对比:特点与适用场景_etcd redis-CSDN博客
##3 kube-scheduler
关键词: 监视新创建的、未指定运行节点(node)的 Pods +选择节点来让 Pod 在上面运行
kube-scheduler
是控制平面的组件, 负责监视新创建的、未指定运行节点(node)的 Pods, 并选择节点来让 Pod 在上面运行。
调度决策考虑的因素包括单个 Pod 及 Pods 集合的资源需求、软硬件及策略约束、 亲和性及反亲和性规范、数据位置、工作负载间的干扰及最后时限
kube-controller-manager 是控制平面的组件, 负责运行控制器进程。
从逻辑上讲, 每个控制器都是一个单独的进程, 但是为了降低复杂性,它们都被编译到同一个可执行文件,并在同一个进程中运行。
控制器有许多不同类型。以下是一些例子:
- Node 控制器:负责在节点出现故障时进行通知和响应
- Job 控制器:监测代表一次性任务的 Job 对象,然后创建 Pod 来运行这些任务直至完成
- EndpointSlice 控制器:填充 EndpointSlice 对象(以提供 Service 和 Pod 之间的链接)。
- ServiceAccount 控制器:为新的命名空间创建默认的 ServiceAccount。
##5cloud-controller-manager
一个 Kubernetes 控制平面组件, 嵌入了特定于云平台的控制逻辑。 云控制器管理器(Cloud Controller Manager)允许将你的集群连接到云提供商的 API 之上, 并将与该云平台交互的组件同与你的集群交互的组件分离开来。
cloud-controller-manager
仅运行特定于云平台的控制器。 因此如果你在自己的环境中运行 Kubernetes,或者在本地计算机中运行学习环境, 所部署的集群不包含云控制器管理器。
与 kube-controller-manager
类似,cloud-controller-manager
将若干逻辑上独立的控制回路组合到同一个可执行文件中,以同一进程的方式供你运行。 你可以对其执行水平扩容(运行不止一个副本)以提升性能或者增强容错能力。
下面的控制器都包含对云平台驱动的依赖:
- Node 控制器:用于在节点终止响应后检查云平台以确定节点是否已被删除
- Route 控制器:用于在底层云基础架构中设置路由
- Service 控制器:用于创建、更新和删除云平台上的负载均衡器
#3节点结构(来源于官方文档)
##1kubelet
kubelet
会在集群中每个节点(node)上运行。 它保证容器(containers)都运行在 Pod 中。
kubelet 接收一组通过各类机制提供给它的 PodSpec,确保这些 PodSpec 中描述的容器处于运行状态且健康。 kubelet 不会管理不是由 Kubernetes 创建的容器。
##2kube-proxy(可选)
kube-proxy 是集群中每个节点(node)上所运行的网络代理, 实现 Kubernetes 服务(Service) 概念的一部分。
kube-proxy 维护节点上的一些网络规则, 这些网络规则会允许从集群内部或外部的网络会话与 Pod 进行网络通信。
如果操作系统提供了可用的数据包过滤层,则 kube-proxy 会通过它来实现网络规则。 否则,kube-proxy 仅做流量转发。
如果你使用网络插件为 Service 实现本身的数据包转发, 并提供与 kube-proxy 等效的行为,那么你不需要在集群中的节点上运行 kube-proxy。
##3容器运行时
这个基础组件使 Kubernetes 能够有效运行容器。 它负责管理 Kubernetes 环境中容器的执行和生命周期。