教程 | 阿克曼结构移动机器人的gazebo仿真(三)

本文介绍了如何在ROS和gazebo环境中配置和控制阿克曼结构的移动机器人。通过配置controller、launch文件、运动学模型,实现了通过ROS topic `tianracer/cmd_vel`控制小车运动。此外,还提供了键盘控制小车的teleop.py脚本,并提及后续将使用ackermann消息进行更精确的控制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第三章、让小车动起来

1►配置controller

在tianracer_description功能包新建config文件夹时,我们可以通过一个yaml文件smart_control_config.yaml来声明我们所需要的controller,以及对应的参数,PID增益和 控制器设置必须保存在yaml文件中,再通过 launch文件加载到param服务器上:

tianracer:
# controls the rear two tires based on individual motors
  # Publish all joint states -----------------------------------
  joint_state_controller:
    type: joint_state_controller/JointStateController
    publish_rate: 50  
  rear_right_velocity_controller:
    type: velocity_controllers/JointVelocityController
    joint: right_rear_wheel_joint
    pid: {p: 100.0, i: 0.01, d: 10.0}
  rear_left_velocity_controller:
    type: velocity_controllers/JointVelocityController
    joint: left_rear_wheel_joint
    pid: {p: 100.0, i: 0.01, d: 10.0}
  front_right_steering_position_controller:
    type: effort_controllers/JointPositionController
    joint: right_steering_hinge_joint
    pid: {p: 4.0, i: 2.0, d: 1.0}    
  front_left_steering_position_controller:
    type: effort_controllers/JointPositionController
    joint: left_steering_hinge_joint
    pid: {p: 4.0, i: 2.0, d: 1.0}
   gazebo_ros_control:
    pid_gains:
      right_rear_wheel_joint:
        p: 100.0
        i: 0.5
        d: 0.0
      left_rear_wheel_joint:
        p: 100.0
        i: 0.5
        d: 0.0

2►配置launch文件

创建control.launch文件启动 ros_control controllers

<?xml version="1.0" encoding="UTF-8"?>
<launch>
  <!-- Load joint controller configurations from YAML file to parameter server -->
  <rosparam file="$(find tianracer_description)/config/smart_control_config.yaml" command="load"/>

  <!-- load controllers -->
  <node name="controller_spawner" pkg="controller_manager" type="spawner" respawn="false"
        output="screen" ns="/tianracer" args="joint_state_controller rear_right_velocity_controller rear_left_velocity_controller front_right_steering_position_controller front_left_steering_position_controller"/>
  <node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher"
      respawn="true" output="screen">
      <remap from="/joint_states" to="/tianracer/joint_states" />
  </node>

  <node name="cmdvel2gazebo" pkg="tianracer_description" type="cmdvel2gazebo.py" respawn="true" output="screen"/>

</launch>

接着创建一个可以将小车模型在gazebo中打开的launch文件tianracer.launch,并且能够加载上述control.launch文件

<?xml version="1.0" encoding="UTF-8"?>
<launch>
      <!-- 设置launch文件的参数 -->
    <arg name="paused" default="false"/>
    <arg name="use_sim_time" default="true"/>
    <arg name="gui" default="true"/>
    <arg name="headless" default="false"/>
    <arg name="debug" default="false"/>
    <!--模型车的起点放置位置-->
    <arg name="x_pos" default="0"/>
    <arg name="y_pos" default="0"/>
    <arg name="z_pos" default="0"/>
    <arg name="R_pos" default="0"/>
    <arg name="P_pos" default&#
### Gazebo阿克曼小车路径规划仿真设置与实现 #### 配置本地代价地图尺寸 为了在 Gazebo 中实现阿克曼小车的路径规划,首先需要配置本地代价地图(local costmap)的宽度和高度。这决定了机器人周围环境感知区域的大小,类似于在 Turtlebot Stage Simulator 中看到的情况[^1]。 ```yaml local_costmap: width: 6.0 # 设置本地代价地图的宽度 height: 6.0 # 设置本地代价地图的高度 ``` #### 基础局部规划器参数调整 基础局部规划器(Base Local Planner)对于非全向移动(non-holonomic)的阿克曼车辆至关重要。通过修改其配置文件中的速度和加速度参数来适应特定类型的机器人运动特性。 ```yaml base_local_planner_params: max_vel_x: 0.5 # 最大线速度 min_vel_x: -0.2 # 最小线速度 max_rotational_vel: 0.8 # 最大角速度 acc_lim_theta: 3.2 # 角度加速度限制 acc_lim_x: 2.5 # 线性加速度限制 ``` #### 创建自定义插件或使用现有工具包 针对阿克曼驱动的小车,在 ROS 和 Gazebo 生态系统中有专门设计的支持库可以帮助简化开发过程。例如 `ackermann_vehicle` 或者其他类似的软件包提供了预构建的功能模块用于快速搭建实验平台。 #### 实现路径规划算法集成 最后一步是将选定的全局/局部路径规划算法集成为整个系统的组成部分。可以考虑采用 Dijkstra、A* 或 RRT 等经典方法作为起点,并根据实际需求进一步优化性能表现。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值