DBSCAN聚类算法

本文介绍了离群点检测算法中的核心概念,包括核心点、直接密度可达、密度可达及密度相连等,阐述了如何通过这些概念来识别数据集中的边界点和噪声点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

主要作用:离群点 异常点的检测

1.核心对象:若某个点的密度达到算法设定的阈值则其为核心点。 (即 r 邻域内点的数量不小于 minPts)
2.直接密度可达:若某点p在点q的 r 邻域内,且q是核心点则p-q直接密度可达
3.密度可达:若有一个点的序列q0、q1、…qk,对任意qi-qi-1是直接密度可达的 ,则称从q0到qk密度可达
4.密度相连:若从某核心点p出发,点q和点k都是密度可达的 ,则称点q和点k是密度相连的。
5.边界点:属于某一个类的非核心点,不能发展下线了
6.噪声点:不属于任何一个类簇的点,从任何一个核心点出发都是密度不可达的
7.高维数据需要降维度或数据削减
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值