文章目录
概括
本文主要用于记录图像处理学习过程中的笔记与疑问,使用pycharm IDE python语言和opencv工具。
第一章 简单的图像处理方式
1.图片、视频资源读取
图片读取
import cv2 as cv
import numpy as np
src = cv.imread("C:/Users/H/Desktop/13d98c6f3117f0a19b9d40c44ac7a30f.jpg")
cv.imshow("src",src)
cv.waitKey(0)
cv.destroyAllWindows()
运行结果:
视频读取:
import cv2 as cv
import numpy as np
def video_demo():
capture = cv.VideoCapture(0)# 0代表开启摄像头获取视频,可使用视频路径代替
while True:
ret, frame = capture.read()
if cv.waitKey(100) == 27:
break
cv.imshow("frame", frame)
video_demo()
cv.waitKey(0)
cv.destroyAllWindows()
视频读取的处理需要截取每一帧图片对图片进行处理后组合展示,呈现视频效果。
2.色彩空间的转换、对比度、亮度调整
HSV图像空间 HSV色彩空间(Hue-色调、Saturation-饱和度、Value-值)将亮度从色彩中分解出来,在图像增强算法中用途很广,在很多图像处理任务中,经常将图像从RGB色彩空间转换到了HSV色彩空间,以便更好地感知图像颜色,利用HSV分量从图像中提取感兴趣的区域。
YUV YCrCb该颜色空间主要是基于人眼对亮度比对色度敏感这一特性而来的,将颜色分量和亮度分量分离开来。
HSV图像空间表
# HSV图像色彩空间转换
def color_space_demo(image):
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
cv.imshow("gray", gray)
hsv = cv.cvtColor(image, cv.COLOR_RGB2HSV)
cv.imshow("hsv", hsv)
yuv = cv.cvtColor(image, cv.COLOR_RGB2YUV)
cv.imshow("yuv", yuv)
Ycrcb = cv.cvtColor(image, cv.COLOR_BGR2YCrCb)
cv.imshow("Ycrcb", Ycrcb)
# 调整图像的亮度与对比度,本函数中c代表对比度,b代表亮度
def contrast_brightness_demo(image, c, b):
h, w, ch = image.shape
blank = np.zeros([h, w, ch], image.dtype)
dst = cv.addWeighted(image, c, blank, 1 - c, b)
cv.imshow("con-bri-demo", dst)
3.像素运算
图像的像素运算:加减乘除、均值 、方差。
import cv2 as cv
import numpy as np
# 像素相加
def add_demo(m1, m2):
dst = cv.add(m1, m2)
cv.imshow("add_demo", dst) # 显示图片
# 像素相减
def subtract_demo(m1, m2):
dst = cv.subtract(m1, m2)
cv.imshow("subtract_demo", dst)
# 像素相除
def divide_demo(m1, m2):
dst = cv.divide(m1, m2)
cv.imshow("divide_demo", dst)
# 像素相乘
def multiply_demo(m1, m2):
dst = cv.multiply(m1, m2)
cv.imshow("multiply_demo", dst)
# 其他操作
def others(m1, m2):
M1, dev1 = cv.meanStdDev(m1) # M1均值,dev1方差
M2, dev2 = cv.meanStdDev(m2) # M2均值,dev2方差
h, w = m1.shape[:2]
print(M1) # 打印均值M1
print(M2) # 打印均值M2
print(dev1) # 打印方差
print(dev2) # 打印方差
img = np.zeros([h, w], np.uint8) # 产生一个所有像素都为0的图片
m, dev = cv.meanStdDev(img) # 获取该图片的均值和方差
print(m) # 打印均值:[[0.]]
print(dev) # 打印方差:[[0.]]
# 说明:可通过均值和方差判断图片中是否有有用信息
src1 = cv.imread("C:/Users/H/Desktop/92e8823ecc933f05edbfe5f9186e42c2.jpg")
src2 = cv.imread("C:/Users/H/Desktop/13d98c6f3117f0a19b9d40c44ac7a30f.jpg")
print(src1.shape)
print(src2.shape)
cv.namedWindow("input image1", cv.WINDOW_AUTOSIZE) # 设置图片尺寸,自动
cv.imshow("input image1", src1) # 显示图像
cv.namedWindow("input image2", cv.WINDOW_AUTOSIZE) # 设置图片尺寸,自动
cv.imshow("input image2", src2) # 显示图像
add_demo(src1, src2)
subtract_demo(src1, src2)
divide_demo(src1, src2)
multiply_demo(src1, src2)
others(src1, src2)
cv.waitKey(0)
cv.destroyAllWindows()
4.泛洪填充 ROI
ROI 是指对图像提取出有用的部分,利用mask(掩模)技术提取纯色背景图像ROI区域中的人和物,并将提取出来的人或物添加在其他图像上。
如下将利用该方式实现对某些色彩的提取并得到想要的部分
import cv2 as cv
import numpy as np
def getRoi(image):
hsv = cv.cvtColor(image, cv.COLOR_BGR2HSV) # 转换成hsv色彩风格
cv.imshow('hsv', hsv)
mask = cv.inRange(hsv, (26, 43, 46), (155, 255, 255)) # 利用inRange产生mask
mask = cv.bitwise_not(mask) #取反
dst = cv.bitwise_and(image, image, mask=mask)
print(dst.shape)
cv.imshow('mask1', mask)
cv.imshow('dst', dst)
src = cv.imread("C:/Users/H/Desktop/13d98c6f3117f0a19b9d40c44ac7a30f.jpg")
cv.imshow('src', src)
getRoi(src)
cv.waitKey(0)
cv.destroyAllWindows()
运行结果:
5.模糊操作
模糊分为均值模糊,中值模糊,高斯模糊,双边模糊,
如下是中值模糊,均值模糊和锐化操作的代码实现:
def custom_blur_demo(image