数据清洗之处理缺失值

本文介绍了pandas如何处理数据中的缺失值。首先,pandas使用NaN来表示缺失值,并且Python的None也会被视为NA。接着,讨论了通过dropna()函数删除缺失值的方法。最后,讲述了fillna()方法在填充缺失值中的应用,这是数据分析中常见的数据预处理步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

缺失数据会在很多数据分析应用中出现,pandas的目标之一就是尽可能无痛地处理缺失值。

一、缺失值的表示

pandas使用浮点值NaN(Not a Number)来表示缺失值:

a = pd.Series(['hello', 'world', np.nan, 'world', 'hello'])
a.isnull()

输出结果:

0    False
1    False
2     True
3    False
4    False
dtype: bool

Python内建的None值在对象数组中也被当作NA处理:

a[0] = None
a.isnull() 

输出结果

0     True
1    False
2     True
3    False
4    False
dtype: bool

二、缺失值的删除

删除缺失值,主要通过pandas库中的dropna函数完成。
python dropna()用法

三、缺失值的填充

大多数情况下,主要使用fillna方法来补全缺失值。
Python-pandas的fillna()方法-填充空值

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值