文章目录 一、基本数据结构 1.1 列表 1.2 元组 1.3 字典 1.4 集合 二、pandas库 2.1 Series和DataFrame 2.2 查找数据 2.3 汇总和计算描述统计 2.4 常用属性、方法和函数 2.5 groupby函数 2.6 对连续数据进行分箱 2.7 缺失值的处理 2.8 数据转换 2.9 stack和unstack 2.10 处理时间序列数据 2.11 可视化 三、numpy库 3.1 生成随机数 3.2 数据探索性分析 3.3 拼接数据 3.4 多维数组 3.5 通用函数 3.6 向量化函数 3.7 矩阵操作 四、其它 4.1 lambda函数 4.2 错误和异常处理 4.3 数据清洗之字符串操作和正则表达式 一、基本数据结构 1.1 列表 数据结构之列表 包括列表的排序、zip函数、交集、并集等。 1.2 元组 数据结构之元组 包括元组的创建和常用方法(count方法) 1.3 字典 数据结构之字典 包括字典的创建和操作(访问、插入、替换、检查、删除等) 1.4 集合 数据结构之集合 包括集合的创建和操作 二、pandas库 2.1 Series和DataFrame pandas之数据结构介绍 包括Series和DataFrame的创建方法 2.2 查找数据 pandas之查找数据 包括使用loc和iloc方法来查找dataframe中的数据 2.3 汇总和计算描述统计 pandas之汇总和计算描述统计 包括求和、方差、平均值、