哈希表的查找 -- 开放寻址法

数据定义

#define NULLKEY -1
#define DELKEY -2
typedef struct {
    KeyType key;
    int count; //探测次数域
}HashTable;

插入

void InsertHT(HashTable ha[], int& n, int m, int p, KeyType k)
{
    int i, adr;
    adr = k % p; //计算
    if (ha[adr].key == NULLKEY || ha[adr].key == DELKEY) //一次可放入
    {
        ha[adr].key = k;
        ha[adr].count = 1;
    }
    else //冲突
    {
        i = 1; //计数寻找次数
        do {
            adr = (adr + 1) % m; //线性探测
            i++;
        } while (ha[adr].key != NULLKEY && ha[adr].key != DELKEY);
        ha[adr].key = k;
        ha[adr].count = i;
    }
    n++; //哈希表元素总个数
}

创建

void CreateHT(HashTable ha[], int& n, int m, int p, KeyType keys[], int n1)
{
    for (int i = 0; i < m; i++) //初始化 m个空间
    {
        ha[i].key = NULLKEY;
        ha[i].count = 0;
    }
    n = 0;
    for (int i = 0; i < n1; i++)  //keys中共 0~n1-1
    {
        InsertHT(ha, n, m, p, keys[i]);
    }
}

删除

//删除
bool DeleteHT(HashTable ha[], int& n, int m, int p, KeyType k)
{
    int adr;
    adr = k % p;
    while (ha[adr].key != NULLKEY && ha[adr].key != k)  //是否一次找到
        adr = (adr + 1) % m;
    if (ha[adr].key == k)
    {
        ha[adr].key = DELKEY;
        return true;
    }
    else
        return false;
}

查找

//查找
void SearchHT(HashTable ha[], int m, int p, KeyType k)
{
    int i = 1, adr;
    adr = k % p;
    while (ha[adr].key != NULLKEY && ha[adr].key != k)
    {
        i++;
        adr = (adr + 1) % m;
    }
    if (ha[adr].key == k)
        cout << "成功:关键字:" << k << ",比较" << i << "次" << endl;
    else
        cout << "失败:关键字:" << k << ",比较" << i << "次" << endl;
}

ASL计算

//ASL
void ASL(HashTable ha[], int n, int m, int p)
{
    int i, j;
    int succ = 0, unsucc = 0;
    int s;
    for (i = 0; i < m; i++)
        if (ha[i].key != NULLKEY)
            succ += ha[i].count;
    cout << "成功ASL:" << n << "-" << succ * 1.0 / n;
    for (i = 0; i < p; i++)
    {
        s = 1; j = i;
        while (ha[j].key != NULLKEY)
        {
            s++;
            j = (j + 1) % m;
        }
        unsucc += s;
    }
    cout << "不成功ASL" << n << "-" << unsucc * 1.0 / p;
}

<think>好的,用户想了解开放寻址法哈希表中的实现与应用,特别是它的实现原理、碰撞解决方法和数据结构方面。首先,我需要回顾一下哈希表的基本概念,确保自己理解正确。哈希表通过哈希函数将键映射到存储位置,但不同的键可能映射到同一位置,导致冲突。开放寻址法就是处理这种冲突的一种方法。 接下来,开放寻址法的核心思想是当冲突发生时,寻找下一个空闲的位置。常见的方法有线性探测、二次探测和双重哈希。我需要分别解释这些方法,说明它们的探测方式以及可能的问题,比如线性探测容易导致聚集现象,二次探测可以缓解但可能无法探测到所有位置,双重哈希则通过第二个哈希函数来减少聚集。 然后,实现原理部分需要详细说明插入、查找和删除操作的步骤。插入时遇到冲突就继续探测,直到找到空位;查找时按照同样的探测顺序直到找到元素或空位;删除时需要注意标记删除而非直接置空,避免影响后续查找。这部分可能需要举例说明,比如用线性探测插入几个键值对的过程。 在应用场景方面,开放寻址法适合内存紧凑、数据量可预估的情况,比如缓存系统或静态数据。而链地址法则适合数据量变化大的场景。要比较两者的优缺点,比如开放寻址法节省指针空间但容易聚集,链地址法处理冲突简单但需要额外内存。 还需要考虑用户可能的问题,比如如何处理探测步长,为什么二次探测的步长是平方,或者双重哈希如何选择第二个哈希函数。同时,需要确保LaTeX格式正确,数学表达式用$...$,独立公式用$$...$$,并检查引用是否正确,比如引用[^1]、[^2]、[^3]是否相关。 最后,生成相关问题时要围绕开放寻址法延伸,比如优缺点、与其他方法的比较、具体应用例子等。确保问题有助于用户深入理解该主题。</think>### 开放寻址法哈希表中的实现与应用 #### 一、开放寻址法的实现原理 开放寻址法(Open Addressing)是一种**哈希冲突解决技术**,其核心思想是当发生哈希冲突时,通过**系统化的探测方式**在哈希表中寻找下一个空闲的存储位置。与链地址法不同,开放寻址法将所有元素直接存储在哈希表数组内,不借助链表结构。 1. **基本公式** 哈希函数定义为: $$ h(k, i) = (h'(k) + f(i)) \mod m $$ 其中: - $h'(k)$ 是初始哈希函数 - $f(i)$ 是冲突解决函数 - $m$ 是哈希表大小 - $i$ 表示第 $i$ 次探测 2. **常见探测方法** | 方法 | 探测函数 $f(i)$ | 特点 | |--------------|-----------------------|----------------------------------------------------------------------| | 线性探测 | $f(i) = i$ | 简单易实现,但易产生聚集现象(Primary Clustering) | | 二次探测 | $f(i) = c_1i + c_2i^2$| 减少聚集,但可能导致无法遍历所有槽位 | | 双重哈希 | $f(i) = i \cdot h_2(k)$ | 使用第二个哈希函数,降低聚集概率,需保证 $h_2(k) \neq 0$ | #### 二、关键操作实现 1. **插入操作** - 计算初始位置 $h'(k)$ - 若该位置为空,直接插入 - 若发生冲突,按探测序列寻找下一个位置,直到找到空槽或遍历整个表 ```python def insert(hash_table, key, value): index = hash_function(key) % len(hash_table) for i in range(len(hash_table)): new_index = (index + i) % len(hash_table) # 线性探测示例 if hash_table[new_index] is None: hash_table[new_index] = (key, value) return raise Exception("Hash table is full") ``` 2. **查找操作** - 按照相同的探测序列查找 - 遇到空槽则说明元素不存在 - 需处理已删除标记(如使用特殊标记TOMBSTONE) 3. **删除操作** - 不能直接清空槽位,否则会破坏探测序列 - 需标记为已删除状态,插入时可复用该位置 #### 三、性能与优化 1. **负载因子控制** 建议保持负载因子 $\alpha < 0.7$($\alpha = \frac{n}{m}$,$n$为元素数,$m$为表大小)。当超过阈值时,需动态扩容并重新哈希。 2. **聚集问题解决方案** - 二次探测可减少线性探测的聚集现象 - 双重哈希的探测步长与键相关,分布更均匀 3. **比较链地址法** | 指标 | 开放寻址法 | 链地址法 | |---------------|-------------------------------|------------------------------| | 内存效率 | 无指针开销,更紧凑 | 需要存储指针 | | 冲突处理 | 依赖探测序列 | 直接链表扩展 | | 删除复杂度 | 需特殊标记处理 | 链表删除简单 | | 缓存局部性 | 数组连续存储,局部性好 | 链表节点可能分散 | #### 四、应用场景 1. **内存敏感场景**:如嵌入式系统、内核级数据结构 2. **固定大小哈希表**:如编译器符号表、DNS缓存 3. **高并发环境**:结合锁粒度优化,减少内存分配开销 #### 引用验证 1. 开放寻址法通过探测函数解决冲突的机制符合中描述的哈希表设计原则 2. 双重哈希的数学定义参考了的冲突处理技术说明 3. 负载因子控制策略与[^3]中哈希表性能优化建议一致
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值