解决数据拟合问题最重要方法是最小二乘法和回归分析。如,我们需要从一组测定的数据(例如N个点(xi,yi)(i=0,1,…,m))去求得自变量 x 和因变量 y 的一个近似解表达式 y=f(x),这就是由给定的 N 个点(xi,yi)(i=0,1,…,m)求数据拟合的问题。(注意数据拟合和数据插值是不同的,举个例子:因为测量数据往往不可避免地带有测试误差,而插值多项式又通过所有的点(xi,yi),这样就使插值多项式保留了这些误差,从而影响逼近精度,使得插值效果不理想)
所以使用最小二乘法曲线拟合法:即寻求已知函数的一个逼近函数y=f(x),使得逼近函数从总体与已知函数的偏差按某种方法度量能达到最小,而又不一定通过全部的点(xi,yi),这个时候就需要使用最小二乘法曲线拟合法。
数据拟合的具体做法是:对给定的数据(xi,yi)(i=0,1,…,m),在取定的函数类ϕ\phiϕ中使误差ri=p(xi)−yi(i=0,1,…,m)r_{i}=p\left(x_{i}\right)-y_{i}(i=0,1, \ldots, m)ri=p(xi)−yi(i=0,1,…,m)的平方和最小,即
[∑i=0mri2=∑i=0m[p(xi−yi)]2]min\left[\sum_{i=0}^{m} r_{i}^{2}=\sum_{i=0}^{m}\left[p\left(x_{i}-y_{i}\right)\right]^{2}\right]_{\min }[i=0∑mri2=i=0∑m[p(xi−yi)]2]min
从几何意义讲,即寻求与给定点 xi−yi(i=0,1,…,m)x_{i}-y_{i}(i=0,1, \ldots, m)xi−yi(i=0,1,…,m) 的距离平方和为最小的曲线y=p(x)。函数p(x)称为拟合函数或最小二乘解,求拟合函数p(x)的方法称为曲线拟合的最小二乘法。
在曲线拟合中,函数类 ϕ\phiϕ 可有不同的选取方法。
MATLAB工具箱中提供了最小二乘拟合函数 polyfit() -->多项式曲线拟合
具体调用格式有三种:
- P = polyfit(X,Y,N)
- [P,S] = polyfit(X,Y,N)
- [P,S,MU] = polyfit(X,Y,N)
(1)P = polyfit(X,Y,N) 返回次数为 n 的多项式 p(x) 的系数,该阶数是 y 中数据的最佳拟合(在最小二乘方式中)。p 中的系数按降幂排列,p 的长度为 n+1.
其中 X 为输入的向量x,Y 为得到的函数值,N 表示拟合的最高次数,返回的P值为拟合的多项式:
P(1)×Xn+P(2)×Xn−1+…+P(N)×X+P(N+1)P(1) \times X^{n}+P(2) \times X^{n-1}+\ldots+P(N) \times X+P(N+1)P(1)×<