由于Python设计的限制(我说的是咱们常用的CPython)。最多只能用满1个CPU核心。
Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。
1、新建单一进程
如果我们新建少量进程,可以如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 | import multiprocessing import time def func(msg): for i in xrange(3): print msg time.sleep(1) if __name__ == "__main__": p = multiprocessing.Process(target=func, args=("hello", )) p.start() p.join() print "Sub-process done." |
2、使用进程池
是的,你没有看错,不是线程池。它可以让你跑满多核CPU,而且使用方法非常简单。
注意要用apply_async,如果落下async,就变成阻塞版本了。
processes=4是最多并发进程数量。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
importmultiprocessing
importtime
deffunc(msg):
foriinxrange(3):
printmsg
time.sleep(1)
if__name__=="__main__":
pool=multiprocessing.Pool(processes=4)
foriinxrange(10):
msg="hello
%d"%(i)
pool.apply_async(func,(msg,))
pool.close()
pool.join()
print"Sub-process(es)
done."
|
3、使用Pool,并需要关注结果
更多的时候,我们不仅需要多进程执行,还需要关注每个进程的执行结果,如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
importmultiprocessing
importtime
deffunc(msg):
foriinxrange(3):
printmsg
time.sleep(1)
return"done
"+msg
if__name__=="__main__":
pool=multiprocessing.Pool(processes=4)
result=[]
foriinxrange(10):
msg="hello
%d"%(i)
result.append(pool.apply_async(func,(msg,)))
pool.close()
pool.join()
forresinresult:
printres.get()
print"Sub-process(es)
done."
|