MySQL——8、索引特性

1、没有索引的问题

索引:提高数据库的性能,索引是物美价廉的东西了。不用加内存,不用改程序,不用调sql,只要执行正确的 create index ,查询速度就可能提高成百上千倍。但是天下没有免费的午餐,查询速度的提高是以插入、更新、删除的速度为代价的,这些写操作,增加了大量的IO。所以它的价值,在于提高一个海量数据的检索速度。
常见索引分为:
主键索引(primary key)
唯一索引(unique)
普通索引(index)
全文索引(fulltext)

另外我们要知道MySQL服务端本质也是一个进程,所以本质是在内存中的,因此所有的CURD操作都是在内存中进行的,那么对于索引也是如此。
我们知道提高算法效率主要有两种途径:1、组织数据结构的方式。2、算法本身。举个例子:假设一个线性数组,我们查找一个数的时间复杂度为O(N),但如果该数组是有序的,我们就可以使用二分查找,时间复杂度为O(logN),这是从算法本身去提高算法的效率。我们也可以修改组织数据结构的方式,比如使用二叉平衡搜索树,那么时间复杂度为O(logN),或者使用哈希表,时间复杂度为O(1)。而索引就是通过方式1,改变组织数据结构的方式从而提高查询数据的效率。

下面我们看一下没有索引和有索引的区别,先创建一个海量数据表。
MySQL数据库测试文件
可以到我的gitee仓库中下载index_data.sql文件,在mysql中source index_data.sql还原出数据库。
首先临时修改全局设置

SET GLOBAL log_bin_trust_function_creators = 1;

修改好之后source xx.sql文件还原即可,需要等待一段时间,好了之后再把全局设置改回来。

SET GLOBAL log_bin_trust_function_creators = 0;

创建好之后我们先看一下表结构:
在这里插入图片描述

接着我们试着查询empno=998877的人员信息:
在这里插入图片描述
我们发现第一次将近8s,第二次起大概控制在5.5s左右。但是这个速度是很慢的,不能容忍的。试想一下你在登录的时候进行校验,结果需要等个5、6s才能登录成功,这是无法忍受的。
接着我们给empno添加索引,添加索引后再次查询看看查询时间:

alter table EMP add index(empno);

在这里插入图片描述
添加索引后再次查询,效率就很高了。


2、认识磁盘

在Linux基础IO中有讲过磁盘和文件系统相关信息,可以移步Linux基础IO(三)——文件系统和软硬链接
在这里插入图片描述
磁盘主要由:盘片、磁头、磁头臂、主轴马达、磁头停靠点组成。磁头会不断地左右摆动,盘片会做高速旋转。并且所有磁头都是一起动的,要么都不动,要么全部一起动。
看图好像只有一个磁盘,实际上不是这样的,在纵向上来看可能有好几个磁盘,一个磁盘对应正反两个盘面,每个盘面都有一个磁头,并且磁头和盘面不接触。

在这里插入图片描述
以盘面中心向外辐射,每个圆都是一个磁道,每个磁道里面又有许多扇区。越往外的扇区就越大,外面的扇区比内侧的扇区物理上要大,但是存储的容量是一样的。当然也不排除有的磁盘越往外扇区越大,所能存储的容量也越大。目前默认所有扇区都是512字节。
目前大部分文件都是存储在磁盘上面的,包括我们的数据库文件,所以只要我们能定位一个扇区,那么就可以定位所有的扇区,那么就可以找到一个文件的全部内容。

在这里插入图片描述
定位一个扇区,首先我们要找到盘面,也就是确定用哪一个磁头head。接着我们可以发现多个盘片同半径的同心圆在纵向方向上来看构成了一个柱面,接着我们定位磁道就是定位柱面cylinder。磁头来回摆动就是在确定柱面。最后确定哪一个扇区,盘片会高速旋转,在这个过程中就是在确定哪个扇区sector。我们把这种数据定位的方式称为CHS寻址方式。
而在系统层面上采用的是LBA寻址方式,将LBA地址转换成CHS,交给磁盘读取数据,至于具体细节可以移动上方链接。

我们现在已经能够在硬件层面定位,任何一个基本数据块了(扇区)。那么在系统软件上,就直接按照扇区(512字节,部分4096字节),进行IO交互吗?并不是。
如果操作系统直接使用硬件提供的数据大小进行交互,那么系统的IO代码,就和硬件强相关,换言之,如果硬件发生变化,系统必须跟着变化。从目前来看,单次IO512字节,还是太小了。IO单位小,意味着读取同样的数据内容,需要进行多次磁盘访问,会带来效率的降低。之前学习文件系统,就是在磁盘的基本结构下建立的,文件系统读取基本单位,就不是扇区,而是数据块。故系统读取磁盘,是以块为单位的,基本单位是4KB 。内存中页框的大小为4KB,我们的可执行程序中也有格式页帧也是4KB,4KB的交互单位可以保证既不会太少(基于局部性原理的预加载机制,如果访问当前数据,极有可能访问其周围的数据),也不会太多造成资源浪费。

磁盘随机访问(Random Access)与连续访问(Sequential Access)
随机访问:本次IO所给出的扇区地址和上次IO给出扇区地址不连续,这样的话磁头在两次IO操作之间需要作比较大的移动动作才能重新开始读/写数据。
连续访问:如果当次IO给出的扇区地址与上次IO结束的扇区地址是连续的,那磁头就能很快的开始这次IO操作,这样的多个IO操作称为连续访问。
因此尽管相邻的两次IO操作在同一时刻发出,但如果它们的请求的扇区地址相差很大的话也只能称为随机访问,而非连续访问。
磁盘是通过机械运动进行寻址的,连续访问不需要过多的定位,故效率比较高。


3、MySQL与磁盘交互基本单位

而MySQL作为一款应用软件,可以想象成一种特殊的文件系统。它有着更高的IO场景,所以为了提高基本的IO效率,MySQL进行IO的基本单位是16KB (后面统一使用 InnoDB 存储引擎讲解)
在这里插入图片描述
如图,MySQL是位于应用层的。OS跟磁盘交互的基本单位是4KB,但是MySQL跟OS交互的单位是16KB,这是为了提高IO的效率。我们知道打开一个磁盘上的文件会创建struct file对象,给应用层返回一个fd,该struct file对象里面保存了文件的缓冲区、inode等信息。MySQL调用read函数从该文件中读取16KB的数据,OS就需要从磁盘上获取4*4KB的内容到文件缓冲区中。逻辑上我们可以认为MySQL直接和磁盘以16KB为基本单位进行数据交互,但是我们要知道MySQL是无法直接和硬件打交道的,因为操作系统是软硬件资源的管理者,所以必须经过操作系统。那么从文件缓冲区获取的数据会放到buffer pool中,MySQL会申请一块空间用来存储数据,将来对数据的修改就是修改buffer pool中的数据,然后再把buffer pool的数据刷新到OS中,调用fsync函数将文件缓冲区的数据刷新到磁盘上。

在MySQL中可以使用以下SQL进行查看:

show global status like 'innodb_page_size';

在这里插入图片描述

建立共识:
1、MySQL中的数据文件,是以page为单位保存在磁盘当中的。
2、MySQL的CURD操作,都需要通过计算,找到对应的插入位置,或者找到对应要修改或者查询的数据。
3、而只要涉及计算,就需要CPU参与,而为了便于CPU参与,一定要能够先将数据移动到内存当中。所以在特定时间内,数据一定是磁盘中有,内存中也有。后续操作完内存数据之后,以特定的刷新策略,刷新到磁盘。而这时,就涉及到磁盘和内存的数据交互,也就是IO了。而此时IO的基本单位就是Page。
4、为了更好的进行上面的操作, MySQL 服务器在内存中运行的时候,在服务器内部,就申请了被称为Buffer Pool的大内存空间,来进行各种缓存。其实就是很大的内存空间,来和磁盘数据进行IO交互。
5、为了更高的效率,一定要尽可能的减少系统和磁盘IO的次数。


4、索引的理解

首先创建测试表并插入数据:

--一定要添加主键哦,只有这样才会默认生成主键索引
create table if not exists user (
id int primary key, 
age int not null,
name varchar(16) not null
);

--插入多条记录,注意,我们并没有按照主键的大小顺序插入哦
insert into user (id, age, name) values(3, 18, '杨过');
insert into user (id, age, name) values(4, 16, '小龙女');
insert into user (id, age, name) values(2, 26, '黄蓉');
insert into user (id, age, name) values(5, 36, '郭靖');
insert into user (id, age, name) values(1, 56, '欧阳锋');

接着我们查询一下user表的数据:
在这里插入图片描述
我们在插入的时候,id是无序乱序插入的。但是在查询user表信息的时候,我们惊奇的发现竟然按照id排序给我们显示出来。
一个现象:我们向一个具有主键的表中,乱序插入数据,发现数据会自动排序,谁做的?为什么这么做?

重谈page:mysql从文件缓冲区读取数据到自己的buffer pool中,buffer pool中有许多个16KB的page。对数据增删查改就是对buffer pool中的page进行操作。那么mysql内部一定会存在大量的page,所以mysql就需要对这些page进行管理,如何管理?——先描述,再组织。
所以不要简单的认为一个page就是一个内存块,page内部也要有对应的管理信息,假如为:

在这里插入图片描述
为何IO交互要是Page:
为何MySQL和磁盘进行IO交互的时候,要采用Page的方案进行交互呢?用多少,加载多少不香吗?
如上面的5条记录,如果MySQL要查找id=2的记录,第一次加载id=1,第二次加载id=2,一次一条记录,那么就需要2次IO。如果要找id=5,那么就需要5次IO。
但,如果这5条(或者更多)都被保存在一个Page中(16KB,能保存很多记录),那么第一次IO查找id=2的时候,整个Page会被加载到MySQL的Buffer Pool中,这里完成了一次IO。但是往后如果在查找id=1,3,4,5等,完全不需要进行IO了,而是直接在内存中进行了。所以,就在单Page里面,大大减少了IO的次数。
你怎么保证,用户一定下次找的数据,就在这个Page里面?我们不能严格保证,但是有很大概率,因为有局部性原理。
往往IO效率低下的最主要矛盾不是IO单次数据量的大小,而是IO的次数。


重谈上面的问题,我们创建主键后插入数据,会给我们自动排序,这是mysql做的,那么为什么要怎么做呢?

首先理解单个page:MySQL中要管理很多数据表文件,而要管理好这些文件,就需要先描述,在组织,我们目前可以简单理解成一个个独立文件是由一个或者多个Page构成的。
在这里插入图片描述
如图所示:不同的Page,在 MySQL 中,都是 16KB ,使用 prevnext 构成双向链表
因为有主键的问题, MySQL 会默认按照主键给我们的数据进行排序,从上面的Page内数据记录可以看出,数据是有序且彼此关联的。
那么为什么插入会按照主键进行排序呢?查询的本质就是遍历,链表结构的特点是增删快,查找慢,所以有必要优化查询,如果数据是排序的,那么从前往后查找就都是有效查找,运气好可能提前结束查找。

理解多个page:

  • 通过上面的分析,我们知道,上面页模式中,只有一个功能,就是在查询某条数据的时候直接将一整页的数据加载到内存中,以减少硬盘IO次数,从而提高性能。但是,我们也可以看到,现在的页模式内部,实际上是采用了链表的结构,前一条数据指向后一条数据,本质上还是通过数据的逐条比较来取出特定的数据。
  • 如果有1千万条数据,一定需要多个Page来保存1千万条数据,多个Page彼此使用双链表链接起来,而且每个Page内部的数据也是基于链表的。那么,查找特定一条记录,也一定是线性查找。这效率也太低了。

而我们会发现,我们看的每一本书,都会有一个目录,目录记录了比如xxx内容对应页码,这样虽然少了几页内容,但是可以提高查找的效率,本质上是一种以空间换时间的做法。那么针对page,我们也可以引入这种方式。
在这里插入图片描述
这时候就不需要再从头往后遍历page中的所有数据了,我们之间遍历目录假设要找主键为4的小龙女的信息,遍历目录找到目录2所指向的数据,从3开始往后遍历,从而提高效率。
那么对于多个page也是一样的,里面全部采用这种方式提高单个page的查找效率。

在这里插入图片描述
但是这时候就有问题了,如果我们的数据很大,需要很多个page存放,那么查找的时候在page和page之间,还是线性遍历,这还需要大量的IO,所以这样效率还是太低了,所以我们也要提高page的查找效率,给page也带上目录,如下图所示:
在这里插入图片描述

  • 使用一个目录项来指向某一页,而这个目录项存放的就是将要指向的页中存放的最小数据的键值。
  • 和页内目录不同的地方在于,这种目录管理的级别是页,而页内目录管理的级别是行。
  • 其中,每个目录项的构成是:键值+指针。图中没有画全。

存在一个目录页来管理页目录,目录页中的数据存放的就是指向的那一页中最小的数据。有数据,就可通过比较,找到该访问那个Page,进而通过指针,找到下一个Page。其实目录页的本质也是页,普通页中存的数据是用户数据,而目录页中存的数据是普通页的地址。

如果数据非常大,导致上面这一层的page目录也非常多,那么该怎么办呢?很简单,继续网上再搭一层就好了。
在这里插入图片描述
如图所示,这种结构就是一颗B+树。索引的本质就是数据结构——B+树。
1、叶子节点保存数据,路上节点不保存数据,非叶子节点不存放数据,只存放目录项。所以非叶子节点可以存放更多的目录项,可以管理更多的叶子page,所以这棵树一定是矮胖型的树。所以我们遍历查找的时候途径路上的节点就会更少,找到目标数据要经历的page就更少,IO的次数就减少,从而提高了查询的效率。
2、叶子节点全部用链表串联起来,上层则没有。
3、这是mysql下的innodb存储的索引结构。一般我们建表后,就是在该结构下进行CURD,那如果我们的表没有主键呢?如果没有主键,也是这样的结构,mysql会创建一列隐藏列,所以会有默认主键。


InnoDB:在创建索引结构来管理数据的时候,其他数据结构为何不行?
链表:线性遍历,效率太低了。
二叉搜索树:一个是高度太高,另外是极端情况下会退化成链表。
二叉平衡搜索树(AVL/红黑树):整体还可以,但是相较于B+树,树高还是高一些,意味着IO次数更多,所以不如B+树。
哈希表:哈希表的结构决定了查找的效率是很快的,但是在范围查找的情况下就不行了。

下面再对比B树和B+树:
在这里插入图片描述
在这里插入图片描述
B树节点既有数据又有Page指针,而B+树只有叶子节点有数据,其他目录页只有键值和Page指针,B+树叶子节点全部相连,而B树没有。
为何选择B+树,不选择B树?

  • 节点不存储data,这样一个节点就可以存储更多的key。可以使得树更矮,所以IO操作次数更少。
  • 叶子节点相连,更便于进行范围查找。

聚簇索引 VS 非聚簇索引

MyISAM存储引擎-主键索引:MyISAM 引擎同样使用B+树作为索引结果,叶节点的data域存放的是数据记录的地址。下图为 MyISAM表的主索引, Col1 为主键。
在这里插入图片描述
其中,MyISAM最大的特点是,将索引Page和数据Page分离,也就是叶子节点没有数据,只有对应数据的地址。相较于 InnoDB 索引, InnoDB是将索引和数据放在一起的。如图,此时叶子节点的key值为主键值,value值为数据的地址。

其中,InnoDB这种用户数据与索引数据在一起索引方案,叫做聚簇索引。MyISAM这种数据和索引分开存放的叫做非聚簇索引。
当然,MySQL除了默认会建立主键索引外,我们用户也有可能建立按照其他列信息建立的索引,一般这种索引可以叫做辅助(普通)索引。
对于MyISAM,建立辅助(普通)索引和主键索引没有差别,无非就是主键不能重复,而非主键可重复。下图就是基于MyISAM的Col2建立的索引,和主键索引没有差别。

在这里插入图片描述
此时key值为col2这一列的值,value值还是为数据的地址。

InnoDB除了主键索引,也会有普通索引,我们以上表中的col3列为例:
在这里插入图片描述
相较于之前创建的主键索引,存放的是整行数据。但再创建普通索引,不再存放所有数据了,而只是存放主键值。因此通过普通索引找到目标记录,需要做两次索引,首先检索普通索引获取主键值,然后用主键值在主键索引中获取记录,这种过程就称为之回表查询。
为什么非主键索引叶子节点不也附上所有数据呢?因为这样太浪费空间了,反正主键索引也存了一遍,就没必要再存一遍了。


6、索引操作

6.1、查询索引

  • 方式一:show keys from 表名; ,为了可读性我们可以在后面加上\G。
    在这里插入图片描述

  • 方式二:show index from 表名;
    在这里插入图片描述

  • 方式三:desc 表明;
    在这里插入图片描述


6.2、创建主键索引

  • 方式一:在创建表的时候,直接在字段名后指定 primary key
create table user1(id int primary key, name varchar(30));
  • 方式二:在创建表的最后,指定某列或某几列为主键索引
create table user2(id int, name varchar(30), primary key(id));
  • 方式三:创建表以后再添加主键
create table user3(id int, name varchar(30));
alter table user3 add primary key(id);

6.3、创建唯一索引

  • 方式一:在表定义时,在某列后直接指定unique唯一属性。
create table user4(id int primary key, name varchar(30) unique);
  • 方式二:创建表时,在表的后面指定某列或某几列为unique
create table user5(id int primary key, name varchar(30), unique(name));
  • 方式三:创建表以后再添加唯一键
create table user6(id int primary key, name varchar(30));
alter table user6 add unique(name);

6.4、创建普通索引

  • 方式一:创建表时,在表的后面指定某列为索引。
create table user8(id int primary key,
	name varchar(20),
	email varchar(30),
	index(name) --在表的定义最后,指定某列为索引
);
  • 方式二:创建完表以后指定某列为普通索引
create table user9(id int primary key, name varchar(20), email
varchar(30));
alter table user9 add index(name); --创建完表以后指定某列为普通索引
  • 方式三:创建一个索引名为 idx_name 的索引
create table user10(id int primary key, name varchar(20), email
varchar(30));
-- 创建一个索引名为 idx_name 的索引
create index idx_name on user10(name);

6.5、删除索引

删除主键索引:

 alter table 表名 drop primary key;

删除其他索引:

alter table 表名 drop index 索引名;

在这里插入图片描述

使用索引名删除索引:

drop index 索引名 on 表明

在这里插入图片描述


6.6、全文索引

当对文章字段或有大量文字的字段进行检索时,会使用到全文索引。MySQL提供全文索引机制,但是有要求,要求表的存储引擎必须是MyISAM,而且默认的全文索引支持英文,不支持中文。如果对中文进行全文检索,可以使用sphinx的中文版(coreseek)。
全文索引主要是用来查找某列值中是否包含某些信息。

首先出创建表并指定全文索引:

CREATE TABLE articles (
	id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
	title VARCHAR(200),
	body TEXT,
	FULLTEXT (title,body)
)engine=MyISAM;

上面FULLTEXT指明了title和body两列作为全文索引。
接着插入一部分数据:

INSERT INTO articles (title,body) VALUES
	('MySQL Tutorial','DBMS stands for DataBase ...'),
	('How To Use MySQL Well','After you went through a ...'),
	('Optimizing MySQL','In this tutorial we will show ...'),
	('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
	('MySQL vs. YourSQL','In the following database comparison ...'),
	('MySQL Security','When configured properly, MySQL ...');

查询body中包含database的数据:
在这里插入图片描述

虽然查出了数据,但是并没有用到索引,可以在该语句前面加上explain查看:
在这里插入图片描述
看到key这一行,我们发现后面为NULL,表明没有用到索引。
那么该如何用索引呢?

select * from articles where match(title, body) against ('database');

在这里插入图片描述
再次使用explain来查看:
在这里插入图片描述


6.7、其他概念

比如我们创建一个普通索引,我们可以不仅指定一列,可以指定多列作为一个普通索引,如下图:
在这里插入图片描述

在这里插入图片描述
此时创建的索引默认采用第一列的属性名充当索引名,也就是name。这个索引我们就称为复合索引。

那么我们再来捋一下B+树的结构特点:
对于InnDB存储引擎,采用的是聚簇索引,索引和数据存放在一起。在这颗B+树中,非叶子节点的key存放的是主键值,value存放的是page的地址,叶子节点的key存放的是主键值,value存放的是整行数据。
对于MyISAM存储引擎,采用的是非聚簇索引,索引和数据分开存放。在这颗B+树种,非叶子节点key存放的是主键值,value存放的是page的地址,叶子节点key存放的是主键值,value存放的是数据行的地址。

接着再来看我们现在创建的复合索引B+树结构,对于非叶子节点,key存放的是name和age,value存放的是page的地址,对于叶子节点,key还是存放name和age,value存放的是整行数据。
现在假设我们只有name,要查找age,那么由于在索引树结构中存放了name和age,所以可以直接在索引中找到对应的name和age,直接给你返回,不需要再进行回表查询。又或者现在你要查找name和age的信息,也是可以直接在B+树中找到,然后直接返回。这就是索引覆盖。

索引最左匹配原则:在查询的时候,比如上面的复合索引name和age,不能跳过name直接使用age,如果只用age不能使用索引,必须包含最左列,可以不使用所有列,但是不能跳过某一列。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值