C++--二叉搜索树

二叉搜索树

1. 二叉搜索树的概念

二叉搜索树又称二叉排序树,他可以是一颗空树,或者是具有以下性质的二叉树:

  • 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值;
  • 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值;
  • 它的左右子树也分别为二叉搜索树。
  • 二叉搜索树中可以支持插入相等的值,也可以不支持插入相等的值,具体看用场景定义,后续学习 map/set/multimap/multiset 系列容器底层是二叉搜索树,其中 map/set 不支持插入相等值, multimap/multiset 支持插入相等值。

下面是两个左边是二叉搜索树,右边的不是二叉搜索树。

在这里插入图片描述

2. 二叉搜索树的性能分析

最优情况下,二叉搜索树为完全二叉树(或者接近完全二叉树),其高度为: l o g 2 N log₂N log2N

最差情况下,二叉搜索树退化为单支树(或者类似链表),其高度为: N N N

所以综合而言二叉搜索树增加修改时的时间复杂度为: O ( N ) O(N) O(N)

下面是最优情况和最差情况的两种二叉搜索树:

在这里插入图片描述

那么这样的效率显然是无法满足需求的,后面需要继续了解二叉搜索树的变形,平衡二叉搜索树AVL树和红黑树,才会适用在内存中存储和搜索数据。

另外需要说明的是,二分查找可以实现 O ( l o g 2 N ) O(log₂N) O(log2N)级别的查找效率,但是三分查找有两个缺陷:

  1. 需要存储在支持不带标识符访问的结构中,并且是顺序。
  2. 插入和删除数据效率很低,因为存储在不带标识符的结构中,插入和删除数据一般需要拷贝数据。

这也就表现出了平衡二叉搜索树的价值。

3. 二叉搜索树的操作与实现

下面讲的二叉搜索树的操作均以数组 a 中的数据为例:

int a[] = {8, 3, 1, 10, 6, 4, 7, 14, 13};

在这里插入图片描述

首先利用模版定义出一个二叉搜索树的结点:

template<class K>
struct BSTNode
{
	K _key;
	BSTNode<K>* _left;
	BSTNode<K>* _right;

	BSTNode(const K& key)
		:_key(key)
		, _left(nullptr)
		, _right(nullptr)
	{}
};

3.1 二叉搜索树的插入

插入的具体过程如下:

  1. 树为空,则直接新增结点,赋值给 root 指针。
  2. 树不为空,按二叉搜索树性质,插入值比当前结点大往右走,插入值比当前结点小往左走,找到空位置,插入新结点。
  3. 如果支持插入相等的值,插入值跟当前结点相等的值可以往右走,也可以往左走,找到空位置,插入新结点即可,因为后面涉及可以插入相同值的AVL数可能会利用旋转将插入的左子树旋转到有右子树的位置上。(要注意的是要保持逻辑一致性,插入相等的值不要一会往右走,一会左走)

注意:在遍历查找插入位置的过程中,需要记录父节点的地址,因为需要将新增节点链接到二叉搜索树中。

在这里插入图片描述

在这里插入图片描述

bool Insert(const K& key)
{
    //树为空
	if (_root == nullptr)
	{
		_root = new Node(key);
		return true;
	}

    //树不为空
	Node* parent = nullptr;
	Node* cur = _root;
    //遍历二叉树比较大小
	while (cur)
	{
		if (cur->_key < key)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (cur->_key > key)
		{
			parent = cur;
			cur = cur->_left;
		}
		else
		{
			return false;
		}
	}

    //开始插入
	cur = new Node(key);

	if (parent->_key < key)
	{
		parent->_right = cur;
	}
	else
	{
		parent->_left = cur;
	}

		return true;
}

3.2 二叉搜索树的查找

查找的具体过程如下:

  1. 从根开始比较,查找x,比根的值大则往右边查找,比根值小则往左边查找。

  2. 最多查找高度次,走到空,还没找到,这个值不存在。

  3. 如果不支持插入相等的值,找到x即返回。

  4. 如果支持插入相等的值,意味着有多个x存在,一般要求查找中序中的第一个x

    如图3,要找到1的右孩子的那个3返回。

在这里插入图片描述

bool Find(const K& key)
{
	Node* cur = _root;
	while (cur)
	{
		if (cur->_key < key)
		{
			cur = cur->_right;
		}
		else if (cur->_key > key)
		{
			cur = cur->_left;
		}
		else
		{
			return true;
		}
	}
    
		return false;
}

3.3 二叉搜索树的删除

删除的具体过程如下:

首先查找元素是否在二叉搜索树中,如果不存在,则返回 false

如果查找元素存在则分别处理以下四种情况: (假设要删除的节点为 N )

  1. 要删除的节点 N 右孩子为空

    **解决方案:**把 N 节点的父亲对应子节点指针指向空,直接删除 N 节点。(情况1可以当成2或者3处理,效果是一样的)。

  2. 要删除的节点 N 左孩子为空,右孩子结点不为空

    **解决方案:**把 N 节点的父亲对应子节点指针指向 N 的右子节点,直接删除 N 节点。

    在这里插入图片描述

  3. 要删除的节点 N 右孩子为空,左孩子结点不为空

    **解决方案:**把 N 节点的父亲对应子节点指针指向 N 的左子节点,直接删除 N 节点

    在这里插入图片描述

  4. 要删除的节点 N 左右孩子均不为空

    解决方案:无法直接删除 N 节点,因为 N 的两个子节点无法放置,只有用替换法删除。找 N 左子树的最大节点 R (最左结点)或者 N 右子树的最小节点 R (最右节点)替代 N ,因为这两个结点中任意一个,放到 N 的位置,都满足二叉搜索树的规则。替代 N 的意思就是 NR 的两个节点的交换,转而变成删除 R 结点,R 结点符合情况2或情况3,可以直接删除。

    在这里插入图片描述

bool Erase(const K& key)
{
 	Node* parent = nullptr;
 	Node* cur = _root;
    
    //先查找到对应目标值所在的结点
 	while (cur)
 	{
 		if (cur->_key < key)
 		{
			parent = cur;
 			cur = cur->_right;
 		}
 		else if (cur->_key > key)
 		{
 			parent = cur;
 			cur = cur->_left;
 		}
        
    	//找到目标值所在节点,执行删除操作
 		else
 		{
            
 			// --- 情况一:待删除节点(cur)的左子树为空 ---
            //注意:这种情况也涵盖左右子树都为空的情况
 			if (cur->_left == nullptr)
 			{
                // 如果 parent 为空,说明要删除的是根节点
 				if (parent == nullptr)
 				{
                     // 直接将根指针指向 cur 的右子节点(即使是 nullptr也没关系)
 					_root = cur->_right;
 				}
 				else// 如果要删除的不是根节点
				{
                    // 判断 cur 是其父节点(parent)的左孩子还是右孩子
 					if (parent->_left == cur)
 						parent->_left = cur->_right;
 					else
						parent->_right = cur->_right;
 				}
 				delete cur;
 				return true;
 			}
            
             // --- 情况二:待删除节点(cur)的右子树为空 ---
 			else if (cur->_right == nullptr)
 			{
                 // 如果 parent 为空,说明要删除的是根节点
 				if (parent == nullptr)
 				{
 					_root = cur->_left;
 				}
 				else// 如果要删除的不是根节点
				{
                    // 判断 cur 是其父节点(parent)的左孩子还是右孩子
 					if (parent->_left == cur)
 						parent->_left = cur->_left;
 					else
                	    parent->_right = cur->_left;
 				}
 				delete cur;
 				return true;
 			}
            
            // --- 情况三:待删除节点(cur)左右子树均不为空 ---
 			else
			{
 				// 2个孩⼦的情况 
 				// 删除情况4,替换法删除 
 				// 假设这⾥我们取右⼦树的最⼩结点作为替代结点去删除 
 				// 这⾥尤其要注意右⼦树的根就是最⼩情况的情况的处理
 				// ⼀定要把cur给rightMinP,否会报错。 
                
                // rightMinP 用来记录最小节点的父节点
 				Node* rightMinP = cur;
                // rightMin 用来寻找并指向右子树中的最小节点,初始指向右子树的根
 				Node* rightMin = cur->_right;
                
                // 循环向左下角移动,直到找到最小节点(即最左侧的节点)
 				while (rightMin->_left)
 				{
 					rightMinP = rightMin;
 					rightMin = rightMin->_left;
 				}
                // 将找到的最小节点(rightMin)的键值,覆盖掉当前要删除节点(cur)的键值
 				cur->_key = rightMin->_key;
                
                // 判断 rightMin 是其父节点(rightMinP)的左孩子还是右孩子
 				if (rightMinP->_left == rightMin)
 					rightMinP->_left = rightMin->_right;
 				else
            	    rightMinP->_right = rightMin->_right;
 				delete rightMin;
 				return true;
 			}
 		}
	 }
	 return false;
}

3.4 模拟实现完整代码

namespace key
{
	template<class K>
	struct BSTNode
	{
		K _key;
		BSTNode<K>* _left;
		BSTNode<K>* _right;

		BSTNode(const K& key)
			:_key(key)
			, _left(nullptr)
			, _right(nullptr)
		{}
	};

	//class SearchBinaryTree
	template<class K>
	class BSTree
	{
		typedef BSTNode<K> Node;
	public:
		bool Insert(const K& key)
		{
			if (_root == nullptr)
			{
				_root = new Node(key);
				return true;
			}

			Node* parent = nullptr;
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					return false;
				}
			}

			cur = new Node(key);

			if (parent->_key < key)
			{
				parent->_right = cur;
			}
			else
			{
				parent->_left = cur;
			}

			return true;
		}

		bool Find(const K& key)
		{
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key < key)
				{
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					cur = cur->_left;
				}
				else
				{
					return true;
				}
			}

			return false;
		}

		bool Erase(const K& key)
		{
			Node* parent = nullptr;
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					//删除
					if (cur->_left == nullptr)
					{
						if (cur == _root)
						{
							_root = cur->_right;
						}
						else
						{
							// 父亲指向我的右
							if (cur == parent->_right)
							{
								parent->_right = cur->_right;
							}
							else
							{
								parent->_left = cur->_right;
							}
						}

						delete cur;
					}
					else if (cur->_right == nullptr)
					{
						if (cur == _root)
						{
							_root = cur->_left;
						}
						else
						{
							// 父亲指向我的左
							if (cur == parent->_right)
							{
								parent->_right = cur->_left;
							}
							else
							{
								parent->_left = cur->_left;
							}
						}

						delete cur;
					}
					else
					{
						// 找右子树最小节点(最左)替代我的位置
						Node* minRightParent = cur;
						Node* minRight = cur->_right;
						while (minRight->_left)
						{
							minRightParent = minRight;
							minRight = minRight->_left;
						}

						cur->_key = minRight->_key;

						if (minRightParent->_left == minRight)
						{
							minRightParent->_left = minRight->_right;
						}
						else
						{
							minRightParent->_right = minRight->_right;
						}

						delete minRight;
					}

					return true;
				}
			}

			return false;
		}

		void InOrder()
		{
			_InOrder(_root);
			cout << endl;
		}

	private:
		void _InOrder(Node* root)
		{
			if (root == nullptr)
			{
				return;
			}

			_InOrder(root->_left);
			cout << root->_key << " ";
			_InOrder(root->_right);
		}

		Node* _root = nullptr;
	};
}

4. 二叉搜索树的应用

二叉搜索树主要应用于两种模型 key 模型和 key/value 模型,上面实现的就是 key 模型。

4.1 key的搜索场景

key 模型即只有 key 作为关键码,结构中只需要存储 Key 即可,关键码即为需要搜索到的值,K 模型中,K 的值不可更改;下面以单词拼写来作为 K 模型的一个具体应用场景:

给一个单词word,判断该单词是否拼写正确,可以将 K 的类型定义为 string,然后将英语词库中的所有单词作为 key,构建一颗二叉搜索树,然后在二叉搜索树中对用户写出的每一个单词进行查找,如果找不到,则说明该单词拼写错误。

4.2 key/value的搜索场景

key/value模型即在 key 模型的基础上,给每一个关键码 key 都对应上一个值 value,即<Key, Value>键值对,在 key/value 模型中,key 的值不可更改,该 key 对应的 value 可以更改;key/value 模型在日常生活中非常常见:

比如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英文单词与其对应的中文 <word, chinese> 就构成一种键值对;

再比如统计每种类型水果的个数,统计成功后,给定水果类型就可快速找到该类型水果的个数,水果类型与其个数就是 <fruit, count> 就构成一种键值对。

上面已经对 key 模型进行了模拟实现,下面对 key 模型的代码进行修改即可修改为 key/value 模型。并实现上面的统计每种类型水果数量的功能:

key /value 模型代码:

namespace key_value
{
	template<class K, class V>
	struct BSTNode
	{
		K _key;
		V _value;
		BSTNode<K, V>* _left;
		BSTNode<K, V>* _right;
		BSTNode(const K& key, const V& value)
			:_key(key)
			, _value(value)
			, _left(nullptr)
			, _right(nullptr)
		{}
	};

	template<class K, class V>
	class BSTree
	{
		typedef BSTNode<K, V> Node;
	public:
		bool Insert(const K& key, const V& value)
		{
			if (_root == nullptr)
			{
				_root = new Node(key, value);
				return true;
			}

			Node* parent = nullptr;
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					return false;
				}
			}

			cur = new Node(key, value);

			if (parent->_key < key)
			{
				parent->_right = cur;
			}
			else
			{
				parent->_left = cur;
			}

			return true;
		}

		Node* Find(const K& key)
		{
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key < key)
				{
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					cur = cur->_left;
				}
				else
				{
					return cur;
				}
			}

			return nullptr;
		}

		bool Erase(const K& key)
		{
			Node* parent = nullptr;
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					//删除
					if (cur->_left == nullptr)
					{
						if (cur == _root)
						{
							_root = cur->_right;
						}
						else
						{
							// 父亲指向我的右
							if (cur == parent->_right)
							{
								parent->_right = cur->_right;
							}
							else
							{
								parent->_left = cur->_right;
							}
						}

						delete cur;
					}
					else if (cur->_right == nullptr)
					{
						if (cur == _root)
						{
							_root = cur->_left;
						}
						else
						{
							// 父亲指向我的左
							if (cur == parent->_right)
							{
								parent->_right = cur->_left;
							}
							else
							{
								parent->_left = cur->_left;
							}
						}

						delete cur;
					}
					else
					{
						// 找右子树最小节点(最左)替代我的位置
						Node* minRightParent = cur;
						Node* minRight = cur->_right;
						while (minRight->_left)
						{
							minRightParent = minRight;
							minRight = minRight->_left;
						}

						cur->_key = minRight->_key;

						if (minRightParent->_left == minRight)
						{
							minRightParent->_left = minRight->_right;
						}
						else
						{
							minRightParent->_right = minRight->_right;
						}

						delete minRight;
					}

					return true;
				}
			}

			return false;
		}

		void InOrder()
		{
			_InOrder(_root);
			cout << endl;
		}

	private:
		void _InOrder(Node* root)
		{
			if (root == nullptr)
			{
				return;
			}

			_InOrder(root->_left);
			cout << root->_key << " " << root->_value << endl;
			_InOrder(root->_right);
		}

		Node* _root = nullptr;
	};

}

使用场景:统计每种类型水果数量

int main()
{
	string arr[] = { "苹果","香蕉","香蕉","西瓜", "苹果", "西瓜", "苹果", "苹果", "西瓜","苹果", "香蕉", "苹果", "香蕉","香蕉","香蕉" };
	key_value::BSTree<string, int> countTree;
	for (auto& e : arr)
	{
		//key_value::BSTNode<string, int>* ret = countTree.Find(e);
		auto ret = countTree.Find(e);

		if (ret == nullptr)
		{
			countTree.Insert(e, 1);
		}
		else
		{
			ret->_value++;
		}
	}

	countTree.InOrder();

	return 0;
}

//运行结果:苹果:6 西瓜:3 香蕉:6
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值