文章核心
本文提出一个nnU-Net架构,是基于2D U-Net和3D U-Net架构形成的自适应框架,会对三个不同的自动配置 U-Net 模型(2D、3D和级联U-Net)运行五重交叉验证,选择平均前景骰子分数最高的模型(或集成)
摘要
背景:U-Net 于 2015 年推出。凭借其简单明了的架构,迅速发展成为医学图像分割中常用的基准。然而,U-Net 对新问题的适应包括关于精确架构、预处理、训练和推理的几个自由度。这些选择并非彼此独立,并且会对整体性能产生重大影响。
架构:本文介绍了nnU-Net(“nonew-Net”),它是一个基于 2D 和 3D原始U-Net 的强大且自适应的框架。本文去掉许多提议的网络设计中多余的花里胡哨的部分,并且专注于那些真正影响方法性能和泛化能力的核心方面。
本文在医疗分割十项全能挑战赛的背景下评估了 nnU-Net,该挑战赛衡量了十个学科的分割性能,包括不同的实体、图像模态、图像几何形状和数据集大小,并且不允许在数据集之间进行手动调整。在提交手稿时,nnU-Net 在挑战赛的在线排行榜上获得了所有类别和七个阶段 1 任务(脑瘤的 1 类除外)的最高平均骰子分数。
1.介绍
背景
医学图像分割目前由深度卷积神经网络 (CNN) 主导。然而,每个分段基准似乎都需要专门的架构和训练方案修改才能获得有竞争力的性能。这导致了该领域的大量出版论文,再加上通常只对少数甚至单个数据集进行有限的验证,使得研究人员越来越难以识别出在他们所演示的有限场景之外实现其承诺优势的方法。
医疗分割十项全能旨在专门解决这个问题:本次挑战赛的参与者被要求创建一个分割算法,该算法在对应于不同的人体实体的 10个数据集中推广。这些算法可以动态适应特定数据集的具体情况,但只能以完全自动的方式进行。
挑战分为两个连续的阶段:1) 开发阶段,参与者可以访问 7个数据集以优化他们的方法,并且使用他们的最终确定方法,必须为相应的7个保留的测试集提交分割;2)第二阶段,在 3个以前未披露的数据集上评估相同的方法。
架构存在的问题
- 本文假设最近提出的一些部分修改的架构过度适应特定问题,或者可能由于状态的次优重新实现而导致不完美验证。例如,使用 U-Net 作为内部数据集的基准,需要使该方法适应新问题,这跨越了多个自由度。尽管架构本身非常简单,并且该方法通常用作基准,但我们认为,关于确切架构、预处理、训练、推理和后处理的其余相互依赖的选择往往会导致 U-Net 在用作基准时表现不佳。
- 如果网络尚未针对当前任务进行完全优化,那么旨在提高网络性能的架构调整就可以相对容易地证明其有效性,因为此时仍有足够的提升空间供调整来改善结果。然而,在本文的初步实验中,这些调整无法改善完全优化网络中的分割结果,因此很可能无法推进最先进的技术。非架构方面在分割方法中的影响要大得多,但同时也被严重低估了。
架构
在本文中,提出了 nnU-Net (“no-new-Net”) 框架,它位于一组三个相对简单的U-Net 模型上,这些模型仅包含对原始 U-Net 的微小修改。省略了最近提出的扩展,例如使用残 差连接、密集连接或注意力机制,并且会自动调整其架构以适应给定的图像几何形状。