回归

本文深入探讨线性回归算法,解析其优点与局限,包括最佳拟合直线的寻找、局部加权线性回归、岭回归及Lasso等缩减方法。通过具体步骤指导如何应用线性回归进行数据预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用线性回归找到最佳拟合直线

  • 优点:结果易于理解,计算上不复杂。
  • 缺点:对非线性的数据拟合不好。
  • 适用数据类型:数值型和标称型数据

回归的一般方法
(1) 收集数据:采用任意方法收集数据。
(2) 准备数据:回归需要数值型数据,标称型数据将被转成二值型数据。
(3) 分析数据:绘出数据的可视化二维图将有助于对数据做出理解和分析,在采用缩减法 求得新回归系数之后,可以将新拟合线绘在图上作为对比。
(4) 训练算法:找到回归系数。
(5) 测试算法:使用R2或者预测值和数据的拟合度,来分析模型的效果。
(6) 使用算法:使用回归,可以在给定输入的时候预测出一个数值,这是对分类方法的提升,因为这样可以预测连续型数据而不仅仅是离散的类别标签
标准回归函数和数据导入函数

from numpy import *
def loadDataSet(fileName):      
    numFeat = len(open(fileName).readline().split('\t')) - 1 
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr =[]
        curLine = line.strip().split('\t')
        for i in range(numFeat):
            lineArr.append(float(curLine[i]))
        dataMat.append(lineArr)
        labelMat.append(float(curLine[-1]))
    return dataMat,labelMat

def standRegres(xArr,yArr):
    xMat = mat(xArr); yMat = mat(yArr).T
    xTx = xMat.T*xMat
    if linalg.det(xTx) == 0.0:
        print "This matrix is singular, cannot do inverse"
        return
    ws = xTx.I * (xMat.T*yMat)
    return ws

局部加权线性回归
在该算 法中,我们给待预测点附近的每个点赋予一定的权重;然后在这个子集上基于 小均方差来进行普通的回归。与kNN一样,这种算法每次预测均需要事先选取出对应的数据子集。 该算法解出回归系数w的形式如下: 在这里插入图片描述
其中w是一个矩阵,用来给每个数据点赋予权重。
LWLR使用“核”(与支持向量机中的核类似)来对附近的点赋予更高的权重。核的类型可 以自由选择,常用的核就是高斯核,高斯核对应的权重如下:
在这里插入图片描述
这样就构建了一个只含对角元素的权重矩阵w,并且点x与x(i)越近,w(i,i)将会越大。上 述公式包含一个需要用户指定的参数k,它决定了对附近的点赋予多大的权重,这也是使用LWLR 时唯一需要考虑的参数
在这里插入图片描述
局部加权线性回归函数

def lwlr(testPoint,xArr,yArr,k=1.0):
    xMat = mat(xArr); yMat = mat(yArr).T
    m = shape(xMat)[0]
    weights = mat(eye((m)))
    for j in range(m):                     
        diffMat = testPoint - xMat[j,:]     
        weights[j,j] = exp(diffMat*diffMat.T/(-2.0*k**2))
    xTx = xMat.T * (weights * xMat)
    if linalg.det(xTx) == 0.0:
        print "This matrix is singular, cannot do inverse"
        return
    ws = xTx.I * (xMat.T * (weights * yMat))
    return testPoint * ws

def lwlrTest(testArr,xArr,yArr,k=1.0): 
    m = shape(testArr)[0]
    yHat = zeros(m)
    for i in range(m):
        yHat[i] = lwlr(testArr[i],xArr,yArr,k)
    return yHat

缩减系数来“理解”数据
岭回归
岭回归就是在矩阵XTX上加一个λI从而使得矩阵非奇异,进而能对XTX + λI求逆。 其中矩阵I是一个m×m的单位矩阵,对角线上元素全为1,其他元素全为0。而λ是一个用户定义的 数值,后面会做介绍。在这种情况下,回归系数的计算公式将变成
在这里插入图片描述
岭是什么
岭回归使用了单位矩阵乘以常量λ,我们观察其中的单位矩阵I,可以看到值1贯穿整个对 角线,其余元素全是0。形象地,在0构成的平面上有一条1组成的“岭”,这就是岭回归中的“岭” 的由来。
岭回归

def ridgeRegres(xMat,yMat,lam=0.2):
    xTx = xMat.T*xMat
    denom = xTx + eye(shape(xMat)[1])*lam
    if linalg.det(denom) == 0.0:
        print "This matrix is singular, cannot do inverse"
        return
    ws = denom.I * (xMat.T*yMat)
    return ws
    
def ridgeTest(xArr,yArr):
    xMat = mat(xArr); yMat=mat(yArr).T
    yMean = mean(yMat,0)
    yMat = yMat - yMean     #to eliminate X0 take mean off of Y
    #regularize X's
    xMeans = mean(xMat,0)   #calc mean then subtract it off
    xVar = var(xMat,0)      #calc variance of Xi then divide by it
    xMat = (xMat - xMeans)/xVar
    numTestPts = 30
    wMat = zeros((numTestPts,shape(xMat)[1]))
    for i in range(numTestPts):
        ws = ridgeRegres(xMat,yMat,exp(i-10))
        wMat[i,:]=ws.T
    return wMat

lasso
与岭回归类似,另一个缩减方法lasso也对回归系数做了限定,对应的约束条件如下:
在这里插入图片描述
唯一的不同点在于,这个约束条件使用绝对值取代了平方和。
前向逐步回归
该算法的伪代码如下所示:

数据标准化,使其分布满足0均值和单位方差 
在每轮迭代过程中:
     设置当前最小误差lowestError为正无穷     
     对每个特征:         
     增大或缩小:             
     改变一个系数得到一个新的W             
     计算新W下的误差             
     如果误差Error小于当前最小误差lowestError:设置Wbest等于当前的W         
将W设置为新的Wbes
def stageWise(xArr,yArr,eps=0.01,numIt=100):
    xMat = mat(xArr); yMat=mat(yArr).T
    yMean = mean(yMat,0)
    yMat = yMat - yMean     #can also regularize ys but will get smaller coef
    xMat = regularize(xMat)
    m,n=shape(xMat)
    #returnMat = zeros((numIt,n)) #testing code remove
    ws = zeros((n,1)); wsTest = ws.copy(); wsMax = ws.copy()
    for i in range(numIt):
        print ws.T
        lowestError = inf; 
        for j in range(n):
            for sign in [-1,1]:
                wsTest = ws.copy()
                wsTest[j] += eps*sign
                yTest = xMat*wsTest
                rssE = rssError(yMat.A,yTest.A)
                if rssE < lowestError:
                    lowestError = rssE
                    wsMax = wsTest
        ws = wsMax.copy()
        #returnMat[i,:]=ws.T
    #return returnMat
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值