K均值聚类

K-均值聚类算法

  • 优点:容易实现。
  • 缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢。
  • 适用数据类型:数值型数据

K-均值是发现给定数据集的k个簇的算法。簇个数k是用户给定的,每一个簇通过其质心 (centroid),即簇中所有点的中心来描述。 K-均值算法的工作流程是这样的。首先,随机确定k个初始点作为质心。然后将数据集中的 每个点分配到一个簇中,具体来讲,为每个点找距其最近的质心,并将其分配给该质心所对应的 簇。这一步完成之后,每个簇的质心更新为该簇所有点的平均值。
上述过程的伪代码表示如下

创建k个点作为起始质心(经常是随机选择) 
当任意一个点的簇分配结果发生改变时
   对数据集中的每个数据点
      对每个质心
         计算质心与数据点之间的距离
      将数据点分配到距其最近的簇
对每一个簇,计算簇中所有点的均值并将均值作为质心 

K-均值聚类的一般流程
(1) 收集数据:使用任意方法。
(2) 准备数据:需要数值型数据来计算距离,也可以将标称型数据映射为二值型数据再用于距离计算。
(3) 分析数据:使用任意方法。
(4) 训练算法:不适用于无监督学习,即无监督学习没有训练过程。
(5) 测试算法:应用聚类算法、观察结果。可以使用量化的误差指标如误差平方和来评价算法的结果。
(6) 使用算法:可以用于所希望的任何应用。通常情况下,簇质心可以代表整个簇的数据 来做出决策。
K-均值聚类支持函数

from numpy import *

def loadDataSet(fileName):      
    dataMat = []            
    fr = open(fileName)
    for line in fr.readlines():
        curLine = line.strip().split('\t')
        fltLine = map(float,curLine) 
        dataMat.append(fltLine)
    return dataMat

def distEclud(vecA, vecB):
    return sqrt(sum(power(vecA - vecB, 2))) 

def randCent(dataSet, k):
    n = shape(dataSet)[1]
    centroids = mat(zeros((k,n)))
    for j in range(n):
        minJ = min(dataSet[:,j]) 
        rangeJ = float(max(dataSet[:,j]) - minJ)
        centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))
    return centroids

K-均值聚类算法

def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
    m = shape(dataSet)[0]
    clusterAssment = mat(zeros((m,2)))
                                   
    centroids = createCent(dataSet, k)
    clusterChanged = True
    while clusterChanged:
        clusterChanged = False
        for i in range(m):
            minDist = inf; minIndex = -1
            for j in range(k):
                distJI = distMeas(centroids[j,:],dataSet[i,:])
                if distJI < minDist:
                    minDist = distJI; minIndex = j
            if clusterAssment[i,0] != minIndex: clusterChanged = True
            clusterAssment[i,:] = minIndex,minDist**2
        print centroids
        for cent in range(k):
            ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]
            centroids[cent,:] = mean(ptsInClust, axis=0) 
    return centroids, clusterAssment

使用后处理来提高聚类性能
一种用于度量聚类效果的指标是SSE(Sum of Squared Error,误差平方和),SSE值越小表示数据点越接近于它们的质心,聚类效果也 越好。
二分K-均值算法 的伪代码形式如下:

将所有点看成一个簇 
当簇数目小于k时
   对于每一个簇
     计算总误差
     在给定的簇上面进行K-均值聚类(k=2) 
     计算将该簇一分为二之后的总误差 
选择使得误差最小的那个簇进行划分操作

二分K-均值聚类算法

def biKmeans(dataSet, k, distMeas=distEclud):
    m = shape(dataSet)[0]
    clusterAssment = mat(zeros((m,2)))
    centroid0 = mean(dataSet, axis=0).tolist()[0]
    centList =[centroid0] 
    for j in range(m):
        clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2
    while (len(centList) < k):
        lowestSSE = inf
        for i in range(len(centList)):
            ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]
            centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas)
            sseSplit = sum(splitClustAss[:,1])
            sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1])
            print "sseSplit, and notSplit: ",sseSplit,sseNotSplit
            if (sseSplit + sseNotSplit) < lowestSSE:
                bestCentToSplit = i
                bestNewCents = centroidMat
                bestClustAss = splitClustAss.copy()
                lowestSSE = sseSplit + sseNotSplit
        bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList) 
        bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit
        print 'the bestCentToSplit is: ',bestCentToSplit
        print 'the len of bestClustAss is: ', len(bestClustAss)
        centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0] 
        centList.append(bestNewCents[1,:].tolist()[0])
        clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss
    return mat(centList), clusterAssment

小结
聚类是一种无监督的学习方法。所谓无监督学习是指事先并不知道要寻找的内容,即没有目 标变量。聚类将数据点归到多个簇中,其中相似数据点处于同一簇,而不相似数据点处于不同簇 中。聚类中可以使用多种不同的方法来计算相似度。
K-均值算法以及变形的K-均值算法并非仅有的聚类算法,另外称为层次聚类的方法也被广泛 使用。下一章将介绍在数据集中查找关联规则的Apriori算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值