K-均值聚类算法
- 优点:容易实现。
- 缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢。
- 适用数据类型:数值型数据
K-均值是发现给定数据集的k个簇的算法。簇个数k是用户给定的,每一个簇通过其质心 (centroid),即簇中所有点的中心来描述。 K-均值算法的工作流程是这样的。首先,随机确定k个初始点作为质心。然后将数据集中的 每个点分配到一个簇中,具体来讲,为每个点找距其最近的质心,并将其分配给该质心所对应的 簇。这一步完成之后,每个簇的质心更新为该簇所有点的平均值。
上述过程的伪代码表示如下
创建k个点作为起始质心(经常是随机选择)
当任意一个点的簇分配结果发生改变时
对数据集中的每个数据点
对每个质心
计算质心与数据点之间的距离
将数据点分配到距其最近的簇
对每一个簇,计算簇中所有点的均值并将均值作为质心
K-均值聚类的一般流程
(1) 收集数据:使用任意方法。
(2) 准备数据:需要数值型数据来计算距离,也可以将标称型数据映射为二值型数据再用于距离计算。
(3) 分析数据:使用任意方法。
(4) 训练算法:不适用于无监督学习,即无监督学习没有训练过程。
(5) 测试算法:应用聚类算法、观察结果。可以使用量化的误差指标如误差平方和来评价算法的结果。
(6) 使用算法:可以用于所希望的任何应用。通常情况下,簇质心可以代表整个簇的数据 来做出决策。
K-均值聚类支持函数
from numpy import *
def loadDataSet(fileName):
dataMat = []
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = map(float,curLine)
dataMat.append(fltLine)
return dataMat
def distEclud(vecA, vecB):
return sqrt(sum(power(vecA - vecB, 2)))
def randCent(dataSet, k):
n = shape(dataSet)[1]
centroids = mat(zeros((k,n)))
for j in range(n):
minJ = min(dataSet[:,j])
rangeJ = float(max(dataSet[:,j]) - minJ)
centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))
return centroids
K-均值聚类算法
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))
centroids = createCent(dataSet, k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m):
minDist = inf; minIndex = -1
for j in range(k):
distJI = distMeas(centroids[j,:],dataSet[i,:])
if distJI < minDist:
minDist = distJI; minIndex = j
if clusterAssment[i,0] != minIndex: clusterChanged = True
clusterAssment[i,:] = minIndex,minDist**2
print centroids
for cent in range(k):
ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]
centroids[cent,:] = mean(ptsInClust, axis=0)
return centroids, clusterAssment
使用后处理来提高聚类性能
一种用于度量聚类效果的指标是SSE(Sum of Squared Error,误差平方和),SSE值越小表示数据点越接近于它们的质心,聚类效果也 越好。
二分K-均值算法 的伪代码形式如下:
将所有点看成一个簇
当簇数目小于k时
对于每一个簇
计算总误差
在给定的簇上面进行K-均值聚类(k=2)
计算将该簇一分为二之后的总误差
选择使得误差最小的那个簇进行划分操作
二分K-均值聚类算法
def biKmeans(dataSet, k, distMeas=distEclud):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))
centroid0 = mean(dataSet, axis=0).tolist()[0]
centList =[centroid0]
for j in range(m):
clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2
while (len(centList) < k):
lowestSSE = inf
for i in range(len(centList)):
ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]
centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas)
sseSplit = sum(splitClustAss[:,1])
sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1])
print "sseSplit, and notSplit: ",sseSplit,sseNotSplit
if (sseSplit + sseNotSplit) < lowestSSE:
bestCentToSplit = i
bestNewCents = centroidMat
bestClustAss = splitClustAss.copy()
lowestSSE = sseSplit + sseNotSplit
bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList)
bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit
print 'the bestCentToSplit is: ',bestCentToSplit
print 'the len of bestClustAss is: ', len(bestClustAss)
centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]
centList.append(bestNewCents[1,:].tolist()[0])
clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss
return mat(centList), clusterAssment
小结
聚类是一种无监督的学习方法。所谓无监督学习是指事先并不知道要寻找的内容,即没有目 标变量。聚类将数据点归到多个簇中,其中相似数据点处于同一簇,而不相似数据点处于不同簇 中。聚类中可以使用多种不同的方法来计算相似度。
K-均值算法以及变形的K-均值算法并非仅有的聚类算法,另外称为层次聚类的方法也被广泛 使用。下一章将介绍在数据集中查找关联规则的Apriori算法。