傅里叶变换
在图片处理中,傅里叶变化会将对图片的时域分析转变为频域分析。
傅里叶的基本思路就是,任何函数都可以近似地变成无限个 sin \sin sin和 cos \cos cos函数的和。对于具有 N − 1 N-1 N−1个采样点的离散信号,可以将其中每个采样点的幅值与频率为 k k k的 sin \sin sin或 cos \cos cos函数中对应点的幅值相乘,就得到了该采样点在频率为 k k k的 sin \sin sin或 cos \cos cos函数上的变换结果。将频率 k k k进行变化,又可以得到新的结果,将所有这些结果相加,就得到了在该采样点上的离散傅里叶变换结果。用数学公式来表示:
F ( k ) = ∑ n = 0 N − 1 f ( n ) e − i ∗ k n ( 2 π N ) F(k) = \sum\limits_{n=0}^{N-1}f(n)e^{-i*kn(\frac{2\pi}{N})} F(k)=n=0∑N−1f(n)e−i∗kn(N2π)
根据欧拉公式( e i x = cos x + i sin x e^{ix}=\cos x +i\sin x eix=cosx+isinx)展开得:
F ( k ) = ∑ n = 0 N − 1 f ( n ) [ cos k n ( 2 π N ) − i sin k n ( 2 π N ) ] F(k) = \sum\limits_{n=0}^{N-1}f(n)[\cos{kn(\frac{2\pi}{N})} -i\sin{kn(\frac{2\pi}{N})}] F(k)=n=0∑N−1f(n)[coskn(N2