OpenCV 边缘检测--Sobel算子和Scharr算子

OpenCV 边缘检测--Sobel算子和Scharr算子

原理

图像中的边缘线是像素值显著变化的边界,而在数学上确定一个函数发生显著变化的位置的方法就是求导。
假设有一个1维的图片 f ( t ) f(t) f(t),在 t t t处有颜色值的显著变化:
1维图片颜色值分布
f ( t ) f(t) f(t)求一阶导数 f ′ ( t ) f'(t) f(t),可以很轻易发现在相应位置的一个导数的最大值:
一阶导数

Sobel算子

  • Sobel算子是一个离散微分算子,计算图片颜色值变化的近似斜率
  • Sobel算子将高斯平滑和微分算法结合起来了

公式

如果假设有一张输入图片为 I I I,则:

  1. x x x方向上的变化 G x G_x Gx可以通过将 I I I和奇数方的卷积核进行卷积运算得到,比如,使用一个 3 × 3 3 \times 3 3×3的卷积核,可以算得:
    G x = [ − 1 0 + 1 − 2 0 + 2 − 1 0 + 1 ] ∗ I G_x= \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix} * I Gx= 121000+1+2+1 I
  2. 同样的,将这个卷积核逆时针旋转90度之后,再和 I I I进行卷积运算,就可以得到**
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值