为什么说边缘人工智能才是未来?

当前,大部分AI处理集中在云端,但随着边缘计算的发展,边缘人工智能成为趋势。边缘AI将推理部分移至设备,保障隐私、安全,降低延迟和成本。Google的Edge TPU和钛灵AIX等硬件加速器推动了这一变革,使得AI能够在各种设备上本地运行,提高响应速度和效率。此外,Model Play等平台简化了边缘AI应用的开发流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天的人工智能(AI)处理大部分是在基于云端的数据中心中完成的。大部分AI处理以深度学习模型训练为主导,这需要大量的计算能力。在过去的6年中,我们看到计算需求增长了300,000倍,其中图形处理单元(GPU)提供了大部分支持。

从AI处理的角度来看,AI推理是在训练后执行的,并且计算强度相对较低,在很大程度上已被忽略。像训练一样,推理也主要在数据中心完成。但是,随着AI应用程序多样性的增长,基于云的集中式培训和推理机制正受到质疑。

为何需要边缘人工智能?

当今的AI边缘处理专注于将AI工作流的推理部分移至设备,从而将数据限制在设备上。AI应用程序迁移到边缘设备的原因有多种,具体取决于应用程序。在评估云计算与边缘处理时,必须考虑隐私,安全性,成本,延迟和带宽。诸如Google的Learn2Compress之类的模型压缩技术的影响,该技术可将大型AI模型压缩为小型硬件尺寸,这也促进了AI边缘处理的兴起。

联合学习和基于区块链的分散式AI架构也是AI处理向边缘化转变的一部分,而部分培训也可能会向边缘化发展。根据AI应用程序和设备类别的不同,有几种用于执行AI边缘处理的硬件选项。这些选项包括CPU,GPU,ASIC,FPGA和SoC加速器。

什么是边缘人工智能?

边缘人工智能将AI移到了真正需要的地方:在设备中,而不是依靠云端中的服务器。

在继续之前,我们应该了解机器学习如何工作的基础知识。任何基于机器学习的解决方案的两个主要阶段是训练和推理,可以描述为:

训练是一个阶段,其中将(非常)大量的已知数据提供给机器学习算法,以使其“学习”ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值