常用矩阵求导

矩阵求导

简介

在工程中经常涉及到矩阵求导、求偏导,特别是做控制进行优化的时候。矩阵AAA对矩阵BBB求导,本质上就是矩阵AAA中的每个元素分别对矩阵BBB中的每个元素进行求导。其实存在歧义的就是如何排列,其实按行排列还是按列排列都是可以的,只要用的时候维度能够对上

这里引入了分子布局、分母布局来统一矩阵求导结果的维度。分子布局是让求导结果的维度以分子为主,分母布局是让求导结果的维度以分母为主。以下面这个为例
∂A∂B \frac{\partial A}{\partial B} BA
分子布局就是让求导的结果排列以AAA为主,分子布局就是让结果排列以BBB为主。

以分母布局为例的基本原则

原则1

fff为标量函数,xxx为列向量
f(x1,x2,...,xp)x=[x1,x2,...,xp]T \begin{aligned} &f(x_1, x_2, ..., x_p)\\ &x = [x_1, x_2, ..., x_p]^T \end{aligned} f(x1,x2,...,xp)x=[x1,x2,...,xp]T
那么fff关于xxx的导数为:
∂f∂x=[∂f∂x1,∂f∂x2,...,∂f∂x3]T \frac{\partial f}{\partial x} = [\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_3}]^T xf=[x1f,x2f,...,x3f]T
fff为标量函数,xxx为行向量
f(x1,x2,...,xp)x=[x1,x2,...,xp] \begin{aligned} &f(x_1, x_2, ..., x_p)\\ &x = [x_1, x_2, ..., x_p] \end{aligned} f(x1,x2,...,xp)x=[x1,x2,...,xp]
那么fff关于xxx的导数为:
∂f∂x=[∂f∂x1,∂f∂x2,...,∂f∂x3] \frac{\partial f}{\partial x} = [\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_3}] xf=[x1f,x2f,...,x3f]

原则2

FFF为列向量函数,xxx为标量:
F=[f1(x),f2(x),...,fp(x)]Tx \begin{aligned} &F = [f_1(x), f_2(x), ..., f_p(x)]^T\\ &x \end{aligned} F=[f1(x),f2(x),...,fp(x)]Tx
那么FFF关于xxx的导数为:
∂F∂x=[∂f1∂x,∂f2∂x,...,∂fm∂x]=∂fT∂x \frac{\partial F}{\partial x} = [\frac{\partial f_1}{\partial x}, \frac{\partial f_2}{\partial x}, ..., \frac{\partial f_m}{\partial x}] = \frac{\partial f^T}{\partial x} xF=[xf1,xf2,...,xfm]=xfT

推论

FFF为列向量函数,xxx为列向量:
F=[f1(x),f2(x),...,fm(x)]Tx=[x1,x2,...,xp] \begin{aligned} &F = [f_1(x), f_2(x), ..., f_m(x)]^T\\ &x = [x_1, x_2, ..., x_p] \end{aligned} F=[f1(x),f2(x),...,fm(x)]Tx=[x1,x2,...,xp]
则根据原则1和原则2可以推理得到FFF关于xxx的导数为:
∂F∂x=[∂f1∂x1∂f2∂x1...∂fm∂x1∂f1∂x2∂f2∂x2...∂fm∂x2............∂f1∂xp∂f2∂xp...∂fm∂xp] \frac{\partial F}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_1} & ... & \frac{\partial f_m}{\partial x_1} \\ \frac{\partial f_1}{\partial x_2} & \frac{\partial f_2}{\partial x_2} & ... & \frac{\partial f_m}{\partial x_2} \\ ... & ... & ... & ... \\ \frac{\partial f_1}{\partial x_p} & \frac{\partial f_2}{\partial x_p} & ... & \frac{\partial f_m}{\partial x_p} \end{bmatrix} xF=x1f1x2f1...xpf1x1f2x2f2...xpf2............x1fmx2fm...xpfm
分子布局其实同分母布局计算思路一样,最后的结果相差一个转置符号。

实际使用中常采用混合布局:向量对标量求导,用分子布局;标量对向量求导,用分母布局;向量对向量求导存在分歧,如求雅各比矩阵以分子布局为主。

工程中常用的矩阵求导

  • ∂xTPx∂x=Px\frac{\partial x^T P x}{\partial x} = PxxxTPx=Px,其中PPP是对称正定阵;

  • ∂Ax∂x=AT\frac{\partial Ax}{\partial x} = A^TxAx=AT

  • 求雅各比矩阵:
    ∂f∂x=[∂f1∂x1∂f2∂x1...∂fm∂x1∂f1∂x2∂f2∂x2...∂fm∂x2............∂f1∂xp∂f2∂xp...∂fm∂xp] \frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_1} & ... & \frac{\partial f_m}{\partial x_1} \\ \frac{\partial f_1}{\partial x_2} & \frac{\partial f_2}{\partial x_2} & ... & \frac{\partial f_m}{\partial x_2} \\ ... & ... & ... & ... \\ \frac{\partial f_1}{\partial x_p} & \frac{\partial f_2}{\partial x_p} & ... & \frac{\partial f_m}{\partial x_p} \end{bmatrix} xf=x1f1x2f1...xpf1x1f2x2f2...xpf2............x1fmx2fm...xpfm

  • (后续补充)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值