tensowflow报错tensorflow.python.framework.errors_impl.InvalidArgumentError<exception str

本文探讨了使用TensorFlow在自定义数据集上导入模型时遇到的InvalidArgumentError异常问题。作者分享了如何确保导入模型的参数与训练时使用的参数一致,特别是针对不同输出数量的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


tensorflow用于自己的数据集时,在用saver.restore导入模型到Session中,导入语句报错,异常链终止时提示:
tensorflow.python.framework.errors_impl.InvalidArgumentError exception str() failed

其实我认为相当一部分python程序错误不能从异常链中读出问题所在,当然也可能是我智商限制了自己推理不出来问题。
其实大多是参数问题,比如这个问题我自己看我的代码模型没有毛病,后来发现自己在导入一个模型的时候,忘了修改模型参数与自己train时候用到的参数匹配。train时候用的模型有4个输出,原先用于mnist数据集的模型有10个输出,在修改后程序正常运行。
概括地讲,你在restore的时候必须保证当先代码构建的模型与原模型参数匹配,如果不匹配则会报错。当然这个问题尤其在你有多个载入模块的时候,需要仔细校验每一个载入模块的参数类型,数目是否与原来train时候的参数数目匹配。唯有如此,才能使自己的模型得到验证工作
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值